Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

SUPPORTING INFORMATION

for

Surprisingly high sensitivity of copper nanoparticles toward coordinating ligands: consequences for the hydride reduction of benzaldehyde

Xavier Frogneux,^{a,b} Ferenc Borondics,^c Stéphane Lefrançois,^c Florian D'Accriscio,^{a,b} Clément Sanchez,^{a,b} Sophie Carenco^{a,b,*}

^a Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, F-75005 Paris, France

^b PSL University, Collège de France, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 11 Place Marcelin Berthelot, Paris, France.

^c SMIS Beamline, Soleil synchrotron, 91190 Saint-Aubin

* Corresponding author e-mail: sophie.carenco@sorbonne-universite.fr

Outline

1.	General details	2
2.	Nanoparticles synthesis and characterizations	3
3.	Reaction profiles using the ATR FTIR cell	6
4.	Catalytic tests	11
5.	Experiments with pureCopper foil	17
6.	TEM imaging with various hydride sources	21

1. General details

All syntheses and procedures were carried under inert gas (N₂ or Ar) using an inert glovebox (H₂O: \leq 0.5 ppm, O₂: \leq 0.5 ppm) and Schlenk techniques.

Powder X-ray reflection measurements (XRD) were performed with a Bruker D8 X-ray diffractometer operating in reflection mode with Cu K α radiation (40 kV, 40 mA). The data were collected in the 15-80° range (2 θ) with steps of 0.05° and a counting time of 2 s using Si-sample holders. The Scherrer equation was applied with a form factor K of 0.94, to a maximum number of reflections for each diffractogram.

For transmission electron microscopy (TEM) observations, the powders were dispersed in anhydrous THF. A few drops of the resulting dispersions were deposited on a carbon-coated copper grid. After solvent evaporation, TEM was performed with a FEI TECMAI G2 Spirit Twin electron microscope operating at 120kV.

Nuclear Magnetic resonance (NMR) spectroscopy: ¹H NMR, and ³¹P{¹H} NMR spectra were recorded at room temperature on a Bruker Avance 300 spectrometer. Shifts (δ) are given in parts per million (ppm) using the resonance of the solvent peak as a secondary reference (δ (¹H) = 7.26 ppm for the residual signal of CDCl₃). Multiplicities are reported using the following abbreviations: s (singlet), bs (broad signal), d (doublet), t (triplet), q (quartet), quint. (quintet), m (multiplet).

GC/MS of the supernatant was acquired on a simple quadripole mass spectrometer DSQII.

THF (99.8+%, anhydrous, unstab.) was purchased from Alfa-Aesar, toluene (99.8%, anhydrous) and acetonitrile (99.93%, anhydrous) were purchased from Aldrich and used as received in a glovebox. Benzaldehyde, tri(*n*-butyl)phosphine (99%, Strem Chemicals), tri-*tert*-butylphosphine (99%, Strem Chemicals), triphenylphosphine (99%, Strem Chemicals), tricyclohexylphosphine (97%, Strem Chemicals), 1,2-bis(diphenylphosphino)benzene (97%, Aldrich), 1,1,1-tris(diphenylphosphinomethyl)ethane (97%, Strem Chemicals), oleylamine (>98%, Aldrich), [Cu(acac)₂] (>99.9% Aldrich), copper foil (thickness 0.25 mm, 99.98%), phenylsilane (97+%, Acros), diphenysilane (97%, Aldrich), triphenylsilane (97%, Aldrich), triethoxysilane (95%, Aldrich), triethylsilane (97%, Acros), TMDS (1,1,3,3-tetramethyldisiloxane) (97%, Acros), PMHS (polymethylhydrosiloxane) (Fluka), (9-BBN-H)₂ (Aldrich), sodium borohydride (NaBH₄) (98%, Alfa-Aesar), sodium hydride (NaH) (95%, Aldrich).

2. Nanoparticles synthesis and characterizations

Preparation of copper nanoparticles with oleylamine:¹

In a round-bottom flask, 25 mL of oleylamine (73.8 mmol, 7.9 eq.) were added. The flask was put under vacuum and purged with N₂ three times. Under N₂, [Cu(acac)₂] (2.5 g, 9.55 mmol) was dissolved in oleylamine by heating the medium gently, under agitation. Once the solution was homogeneous, the temperature was increased to 250 °C for 2 h. The color changed from sky-blue to brown to black. After cooling at RT under N₂, *n*-hexane (5 mL), acetone (25 mL) and methanol (2 mL) were successively added to the crude solution. Then the nanoparticles were isolated by centrifugation (3,000 rpm, 20 min, 20 °C). The supernatant was removed and the particles were redispersed in *n*-hexane and washed with acetone/methanol (25 mL/2 mL) and centrifugated. This operation was repeated three times. The nanoparticles were then dried under a N₂ flow and stored in a glovebox (H₂O: \leq 0.5 ppm, O₂: \leq 0.5 ppm). 510 mg of powder were obtained (yield = 85%).

These nanoparticles will be referred as Cu NPs in the following.

The nanoparticles were confirmed to be Cu(0) nanoparticles by XRD. Scherrer equation indicated a size of crystallites of approx. 13 nm.

Figure S1 - XRD on the powder of the isolated Cu NPs.

¹H NMR Analysis of the supernatant of the Cu NPs synthesis:

Figure S2 - Comparison of pure OAm (top) and the synthesis crude (bottom) by ¹H NMR. Colored dots indicate the attribution of characteristic NMR peaks.

Two side-products could be identified in the crude after elimination of the Cu NPs and concentration under vacuum, by ¹H NMR and GC/MS. Comparison with the spectrum of pure OAm shows the complete conversion of OAm into various products. Among them, *N*-oleylacetamide (mass 309 g.mol⁻¹) and oleanitrile (mass 263 g.mol⁻¹) can be identified with signature chemical shifts at 3.22 ppm (q, *J* = 7 Hz, N-CH₂, red dot), 1.96 ppm (s, COCH₃, blue dot) and 2.60 ppm (bs, NH, green dot) for *N*oleylacetamide² and 2.32 ppm (t, *J* = 7 Hz, NC-CH₂, orange dot), 1.65 ppm (quint., *J* = 7 Hz, NC-CH₂-CH₂-CH₂, purple dot) for oleanitrile.³

ATR FT-IR cell at SMIS beamline (SOLEIL)

Figure S3 - FTIR cell used for the IR study (A) Simplified scheme of the ATR-FTIR cell; (B) view of the cell, 1 € coin for scale; (C) Cu NPs layered ATR crystal; (D) Top view of the experimental set-up.

The suspension of Cu NPs was drop-casted on an ATR Si-crystal (dimension: 1 cm x 2 cm) to get a thin layer of NPs, which was then analyzed by FT-IR. Frequencies below 1200 cm^{-1} could not be detected due to the absorption of the crystal.

Figure S4 - FTIR spectra comparison between oleylamine and Cu NPs measured under inert atmosphere

3. Reaction profiles using the ATR FTIR cell

In a glovebox, a layer of CuNPs was prepared by dropcasting a suspension of CuNPs in THF on the ATR crystal. The crystal was then placed in the IR-cell and sealed. The FTIR analysis takes place under a nitrogen flushed box. In the FTIR cell, a THF solution (5 mL) containing PhCHO (0.5 mL), PhSiH₃ (0.24 mL) and P(n-Bu)₃ (0.02 mL) is added with a syringe on the layer of CuNPs and the spectra are recorded every 80 s.

In a glovebox, a layer of CuNPs was prepared by dropcasting a suspension of CuNPs in THF on the ATR crystal. The crystal was then placed in the IR-cell and sealed. The FTIR analysis takes place under a nitrogen flushed box. In the FTIR cell, a THF solution (5 mL) containing PhCHO (0.5 mL) and PhSiH₃ (0.24 mL) is added with a syringe on the layer of CuNPs and the spectra are recorded every 80 s.

without P(*n*-Bu)₃: Overlay of spectra (over 30 min) from light grey to dark:⁴

Figure S5-Overlay of FTIR evolution of the reaction medium in the absence of $P(n-Bu)_3$. Light-gray spectra as the first ones in the series. The last spectrum is the black one.

Observations: no change of the signal of benzaldehyde (green dots), the v(Si-H) signal slightly shifts to the left (2 cm⁻¹) and broadens over time. No detection of new signals.

Without benzaldehyde:

In a glovebox, a solution of PhSiH₃(0.240 mL) in THF (5 mL) is prepared. Under a flow of N₂, 0.1 mL of this solution is added to the FI-IR cell. Then, 0.1 mL of a well-dispersed THF solution (5 mL) containing 2 mg of Cu NPs and 0.02 mL of P(n-Bu)₃, is added to the cell through the inlet. The spectra are recorded every 80 s.

Figure S6 - Overlay of FTIR evolution of the reaction medium in the absence of benzaldehyde. Light-gray spectra as the first ones in the series. The last spectrum is the black one.

Figure S7 - Integration of the v(Si-H) band over time

Without phenylsilane:

In a glovebox, a solution of PhCHO (0.5 mL) in THF (5 mL) is prepared. Under a flow of N₂, 0.1 mL of this solution is added to the FIIR cell. Then, 0.1 mL of a well-dispersed THF solution (5 mL) containing 2 mg of Cu NPs and 0.02 mL of P(*n*-Bu)₃, is added to the cell through the inlet. The spectra are recorded every 80 s.

Figure S8 - Overlay of FTIR evolution of the reaction medium in the absence of phenylsilane. Light-gray spectra as the first ones in the series. The last spectrum is the black one.

Figure S9 - Integration of the v(C=O) band over time

Reaction profile with a layer of Cu NPs dispersed in an excess of DBU (instead of $P(n-Bu)_3$):

In a glovebox, a layer of Cu NPs + xsDBU was prepared by dropcasting a suspension of Cu NPs (1mg) + DBU (1mL) in THF (5 mL) on the ATR crystal. The crystal was then placed in the IR-cell and sealed. The FT-IR analysis takes place under a nitrogen flushed box. In the FT-IR cell, a THF solution (5 mL) containing PhCHO (0.5 mL), PhSiH₃ (0.24 mL) is added with a syringe on the layer of Cu NPs and the spectra are recorded every 80 s.

Figure S10-Overlay of FTIR evolution of the reaction medium in the presence of DBU instead of $P(n-Bu)_3$. Light-gray spectra as the first ones in the series. The last spectrum is the black one.

Reaction profile with PhMe₂SiH instead of PhSiH₃:

In a glovebox, a layer of Cu NPs was prepared by dropcasting a suspension of Cu NPs $(1 \text{ mg}) + P(n-Bu)_3 (0.02 \text{ mL})$ in THF (5 mL) on the ATR crystal. The crystal was then placed in the IR-cell and sealed. The FT-IR analysis takes place under a nitrogen flushed box. In the FT-IR cell, 0.1 mL of a THF solution (0.5 mL) containing PhCHO (0.05 mL), PhMe₂SiH (0.08 mL) and is added with a syringe on the layer of Cu NPs and the spectra are recorded every 80 s.

Figure S11 - Overlay of FTIR evolution of the reaction medium in the presence of dimethylphenylsilane instead of phenylsilane. Light-gray spectra as the first ones in the series. The last spectrum is the black one.

4. Catalytic tests

In a 10 mL vial, CuNPs (2mg, 0.03 mmol) were suspended in THF (5 mL). After the addition of 300μ L of a 0.1 M solution of P(*n*-Bu)₃ in THF, the mixture was put in a sonication bath for 1 min. To this dark red suspension, PhSiH₃ (250 μ L, 2.03 mmol) and PhCHO (500 μ L, 4.92 mmol) are added. Self-heating of the medium and formation of bubbles is observed at this point. After 2 h of agitation at room temperature, an aliquot of the crude is analyzed by ¹H NMR in CDCl₃ to determine the conversion of benzaldehyde.

Figure S12 - ¹H NMR in CDCl₃ of aliquots of the reaction mixture: A = Benzaldehyde with (Cu NPs + P(n-Bu)₃ (0.6 mol%)) in THF; B = after addition of PhSiH₃, room temperature, 2 h.

Observations using $[Cu(acac)_2] + P(n-Bu)_3$ as catalyst:

To the blue solution of $[Cu(acac)_2]$ in THF, addition of $P(n-Bu)_3$ did not give any visible change. At the addition of PhSiH₃, the solution quickly changed from blue to yellow then dark brown. A TEM grid was prepared with an aliquot, showing the formation of NPs (Figure S13).

 $\label{eq:Figure S13-TEM} image of the nanoparticles formed during after the addition of PhSiH_3 to the solution of Cu(acac)_2 + P(n-Bu)_3 in THF$

Comparison of benzaldehyde conversion in the presence of various phosphines:

In a 10 mL vial, Cu NPs (1 mg, 0.016 mmol) were suspended in THF (2.5 mL). After the addition of 0.015 mmol of the corresponding phosphine, the mixture was put in a sonication bath for 1 min. To this dark red suspension, PhSiH₃ (125 μ L, 1.01 mmol) and PhCHO (250 μ L, 2.46 mmol) are added. After 15 min of agitation at room temperature, an aliquot of the crude is analyzed by ¹H NMR in CDCl₃ to determine the conversion of benzaldehyde. The results are detailed in Table S1.

Ph ^O + Ph ^{SiH} 0.4 equiv	Cu NPs (0.6 mol%) 3 phosphine (0.6 mol%) THF (2.5 mL), RT, 15 min V.	$Ph \rightarrow O_{3}^{Si}Ph + (Ph \rightarrow O_{2}^{Si}Ph)$
Entry	Phosphine	NMR yield ^(a) (%)
1	P(<i>n</i> -Bu) ₃	93%
2	P <i>t</i> Bu₃	2%
3	PCy ₃	59%
4	PPh ₃	85%
5	dppBz ^(b)	76%
6	Triphos ^(c)	<1%

(a) based on benzaldehyde conversion into silylated benzylic alcohol species. (b) 0.5 equiv. vsCu (c) 0.33 equiv. vsCu

triphos

Table S1 - Influence of the phosphine.

ESI-MS analysis

ESI/MS was acquired using a mass spectrometer LC ESI/LTQ Orbitrap.

Sample preparation:

Under inert atmosphere, 2 mg of Cu NPs were suspended in 2 mL of pure $P(n-Bu)_3$ and agitated at RT for 1 week. The suspension was then diluted with THF (5 mL) and centrifuged at 30,000 g for 25 min. The supernatant was eliminated and the resulting solid redispersed in 5 mL of THF and centrifuged again (operation repeated twice). The resulting powder was redispersed in THF (1 mL). For the ESI-MS analysis, 15 µL of this suspension was diluted in 1 mL of acetonitrile.

ESIPositive mode ESI in CH₃CN (low energy)

Figure S14-ESI positive mode in CH_3CN (low energy).

Figure S15 - ESI positive mode in CH₃CN (high energy).

ICP-MS analysis

The analysis was conducted on a iCAP 6000 ICP-AES Thermo Fisher. The calibration has been realized with ICP standard copper solutions $(1000 \pm 3 \text{ g.mL}^{-1})$ in HNO₃(4 w%), PlasmaCAL from SCP science.

Sample preparation:

Under inert atmosphere, 2 mg of Cu NPs (0.032 mmol of Cu atoms) were suspended in 5 mL of THF in the presence of a phosphine (1 equiv. vs. Cu atom), TMDS (0.500 mL, 2.82 mmol) and benzaldehyde (0.500 mL, 5 mmol) and agitated at RT for 15 min. The reaction medium was then centrifuged at 10,000 g for 30 min. The colorless supernatant was carefully separated and the volatiles were removed under vacuum. The resulting oil was dissolved in HNO₃ 5 w% (10 mL) and the aqueous phase was analyzed by ICP, using the 324.7 and 327.3 nm wavelength of copper for the dosage.

The analysis was recorded on two samples prepared independently: the concentration of Cu leached species in solution after workup steps were 0.15 and 0.12 mM, corresponding to respectively a leaching of 5.1% and 4.3% of the quantity of copper initially introduced.

5. Experiments with pure Copper foil

In a 10 mL vial, a Cu foil (approx. 45 mg, 0.5 cm x 0.5 cm) put in THF (2.5 mL). After the addition of 150 μ L of a 0.1 M solution of P(*n*-Bu)₃ in THF, PhSiH₃ (120 μ L, 0.97 mmol) and PhCHO (250 μ L, 2.46 mmol) are added. After 18 h of agitation at room temperature, an aliquot of the crude is analyzed by ¹H NMR in CDCl₃ to determine the conversion of benzaldehyde and phenylsilane.

Figure S16 - Photographs of the reactions: left: with Cufoil without $P(n-Bu)_3$; right: with Cufoil with $P(n-Bu)_3$.

Without P(n-Bu)₃

Figure S17 - ¹H NMR spectrum of the reaction crude (without $P(n-Bu_3)$).

Figure S18 - ${}^{1}H$ NMR and ${}^{31}P{}^{1}H$ NMR spectra of the reaction crude (without Cu foil).

with Cu foil and P(n-Bu)₃

Figure S19 - ¹H NMR and ³¹P{¹H} NMR spectra of the reaction crude (with Cu foil and P(n-Bu)₃).

	+	"X"-H —	Cu NPs (0.6 mol%) $P(n-Bu)_3 (0.6 mol\%)$ THF, RT, 18 h (XX)
		1.2 equiv.	
Entry	Hydride source	Conversion ^{(a}	TEM observation
1	PhSiH ₃	>99% ^(b)	and the second second
2	Dh. Citt	- 000/	50 nm
2	Pn23In2	>99%	50 nm
3	(EtO)₃SiH	>99%	100 nm
4	TMDS	31%	50 nm
5	PhMe ₂ SiH	n.d.	2 <u>0 nm</u>

6. TEM imaging with various hydride sources

6	Et₃SiH	n.d.	50 nm
7	Ph₃SiH	n.d.	20 nm
8	PMHS	n.d.	20 m
9 ^(c)	NaH	>99%	20 nm
10	NaBH₄	>99%	20 nm
11	(9-BBN-H)₂	>99%	50 nm

(a) ¹H NMR yield given for the conversion of benzaldehyde to the corresponding alcohol; n.d. = not detected (b) Complete after 20 min. (c) benzaldehyde is fully converted into benzyl benzoate.

Table S2 - TEM observations of table 2 of the main text.

References

- S. Carenco, Y. Hu, I. Florea, O. Ersen, C. Boissière, N. Mézailles and C. Sanchez, *Chem. Mater.*, 2012, 24, 4134–4145.
- 2 M. Abbas and C. Slugovc, *Monatshefte fur Chemie*, 2012, **143**, 669–673.
- 3 Y. Suzuki, T. Yoshino, K. Moriyama and H. Togo, *Tetrahedron*, 2011, **67**, 3809–3814.
- M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar and F.
 Borondics, *Synchrotron Radiat. News*, 2017, **30**, 40–45.