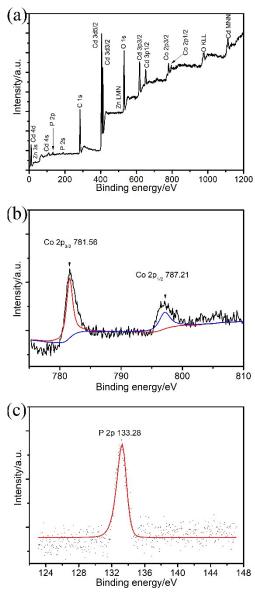
Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018


Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Structural modulation of CdS/ZnO nanoheterojunction arrays for the full solar water splitting and the degradation mechanisms

Weijie Yang,^a Weibing Wu,*a Wenwen Chen,^a Jizuo Zhao,^a Xun Hu.^a

^a School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China

*Corresponding author E-mail: mse wuwb@ujn.edu.cn

Fig. S1 XPS survey scan from CdS/ZnO-CoPi electrode. (a) over a large range at low resolution, (b) Co 2p and (c) P 2p at high resolution.

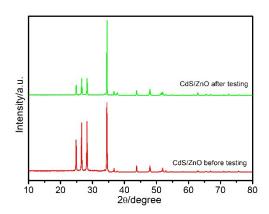


Fig. S2 XRD patterns of CdS/ZnO NHA before and after PEC test.

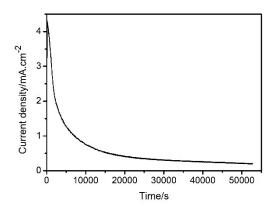
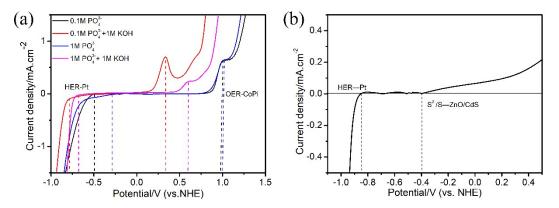
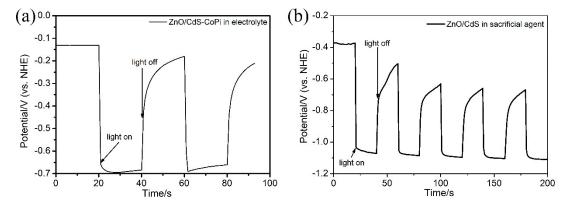




Fig. S3 The i-t curve of CdS/ZnO-CoPi NHA with CdCl $_2$ heat treatment in 1M phosphate electrolyte

Fig. S4 (a) The LS curves measured on Pt and FTO/CoPi electrode in different electrolyte solutions. (b) The LS curves measured on Pt and CdS/ZnO electrode in 0.35 M Na₂S and 0.25 M Na₂SO₃ sacrificial solution.

Fig. S5 The dark and light potential measured in different electrolyte solutions in open circuit configuration. (a) CoPi-CdS/ZnO NHA with CdCl₂ heat treatment in 0.1 M phosphate solution (pH=14) for the full water splitting. (b) CdS/ZnO NHA in the 0.35 M Na₂S and 0.25 M Na₂SO₃ sacrificial solution.