Electronic Supplementary Information (ESI)

Tandem catalysis induced by hollow PdO: highly efficient H₂ generation coupled with organic dye degradation via sodium formate reforming at room temperature

Xiaohui Zhu,^a Leilei Du,^a Ziwei Guo,^a Shuang Chen,^a Biling Wu,^a Xiangdong Liu,^{a,*} Xiaoqing Yan,^b Nobuyuki Takeuchi,^c Hisayoshi Kobayashi,^c Renhong Li^{a,*}

^aDepartment of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, China. ^bDepartment of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China. ^cDepartment of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.

Keywords: Tandem catalysis; Formate reforming; Hydrogen; Dye degradation; Kirkendall nanovoid

*Corresponding authors:

E-mail: lirenhong@zstu.edu.cn (R.H. Li); liuxd2007@yeah.net (X.D. Liu)

Fig. S1 N_2 adsorption and desorption isotherms of (a) TiNTs, (b) Pd/TiNTs without calcination, (c) kv-PdO/TiNTs and (d) Pd/TiNTs catalysts with their pore-size distributions (inset).

Fig. S2 H_2 evolution from HCOONa aqueous solution (1 M) cyclic experiment catalyzed by PdO/TiNTs (1.0 wt%) catalysts.

Fig. S3 GC-TCD spectrum of formate acid solution (1 M) catalyzed by kv-PdO/TiNTs (1.0 wt%) catalysts.

Time /min Fig. S4 GC-TCD spectrum of HCOONa solution (1 M) catalyzed by kv-PdO/TiNTs (1.0 wt%) catalysts.

Fig. S5 (PdO) $_8/(TiO_2)_{24}$ and Pd $_{10}/(TiO_2)_{24}$ unit cells

Fig. S6 (a) (PdO)₈/(TiO₂)₂₄–H₂O [#1], (b) TS [#2], and (c) (PdO)₈/(TiO₂)₂₄–H-HO [#3].

Fig. S7 (a) (PdO)₈/(TiO₂)₂₄–HCOONa [#4], (b) TS [#5], and (c) (PdO)₈/(TiO₂)₂₄–(Pd)H-COONa [#6].

Fig. S8 (a) (PdO)₈/(TiO₂)₂₄–HCOONa [#4'], (b) TS [#5'], and (c) (PdO)₈/(TiO₂)₂₄–(O)H-COONa [#6'].

Fig. S9 (a) HO-H-(PdO)₈-(Pd)H-COONa-(TiO₂)₂₄ [#7], (b) TS [#8], and (c) H-(PdO)₈/(TiO₂)₂₄–(Pd)H-NaHCO₃ [#9].

Fig. S10 (a) HO-H-(PdO)₈-(O)H-COONa-(TiO₂)₂₄ [#7'], (b) TS [#8'], and (c) H-(PdO)₈/(TiO₂)₂₄-(O)H-

NaHCO₃ [#9'].

Fig. S11 (a) $H-(PdO)_{8}-(Pd)H-NaHCO_{3}-(TiO_{2})_{24}$ [#10], (b) TS [#11], and (c) $H_{2}-(PdO)_{8}-NaHCO_{3}-(TiO_{2})_{24}$ [#12].

Fig. S12 (a) H-(PdO)₈-(O)H-NaHCO₃-(TiO₂)₂₄ [#10'], (b) TS [#11'], and (c) H₂-(PdO)₈-NaHCO₃-(TiO₂)₂₄ [#12'].

Fig. S13 (a) $Pd_{10}/(TiO_2)_{24}$ -H₂O [#1], (b) TS [#2], and (c) $Pd_{10}/(TiO_2)_{24}$ -H-HO [#3].

Fig. S14 (a) Pd₁₀/(TiO₂)₂₄–HCOONa [#4], (b) TS [#5], and (c) Pd₁₀/(TiO₂)₂₄–H-COONa [#6].

Fig. S15 (a) HO-H-(Pd)₁₀-H-COONa-(TiO₂)₂₄ [#7], (b) TS [#8], and (c) H-Pd₁₀/(TiO₂)₂₄-H-NaHCO₃ [#9].

Fig. S16 (a) $H-(Pd)_{10}-H-NaHCO_3-(TiO_2)_{24}$ [#10], (b) TS [#11], and (c) $H_2-(Pd)_{10}-NaHCO_3-(TiO_2)_{24}$ [#12].

Fig. S17 (a) (PdO)₈/(TiO₂)₂₄–HCOOK [#4], (b) TS [#5], and (c) (PdO)₈/(TiO₂)₂₄–(Pd)H-COOK [#6].

Fig. S18 (a) HO-H-(PdO)₈-(Pd)H-COOK-(TiO₂)₂₄ [#7], (b) TS [#8], and (c) H-(PdO)₈/(TiO₂)₂₄–(Pd)H-KHCO₃ [#9].

Fig. S19 (a) $H-(PdO)_{8}-(Pd)H-KHCO_{3}-(TiO_{2})_{24}$ [#10], (b) TS [#11], and (c) $H_{2}-(PdO)_{8}-KHCO_{3}-(TiO_{2})_{24}$ [#12].

	E (eV)	ΔE(eV)	ΔE(kJ/mol)	Relative	Relative
				energy (eV)	energy
					(kJ/mol)
PdO-TiO ₂ -H ₂ O	-69876.228			-1.108	-104.7
TS	-69875.976	0.252	23.81	-0.856	-80.9
PdO-TiO ₂ -H-OH	-69875.976			-0.856	-80.9
PdO-TiO ₂ -HCOONa	-71759.241			-4.567	-431.9
TS	-71759.240	0.001	0.09	-4.566	-431.9
PdO-TiO ₂ -H-COONa	-71759.374			-4.700	-444.19
PdO-TiO ₂ -H-OH-H- COONa	-72228.725			-5.333	-503.99
TS	-72228.361	0.364	34.39	-5.333	-503.99
PdO-TiO ₂ -H-H-NaHCO ₃	-72228.371			-4.979	-470.5
TS	-72226.357	2.014	190.30	-2.965	-280.2
PdO-TiO ₂ -H ₂ -NaHCO ₃	-72227.876			-4.484	-423.7

Table S1 Energies of molecules (radicals) and energy change along reactions over $(PdO)_8/(TiO_2)_{24}$ catalyst with Pd as the active site for H abstraction.

	E (eV)	ΔE(eV)	ΔE(kJ/mol)	Relative	Relative
				energy (eV)	energy
					(kJ/mol)
HCOONa	-2348.272				
H ₂ O	-468.718				
PdO-TiO ₂	-69406.402				
PdO-TiO ₂ -HCOONa	-71759.240			-4.566	-431.5
TS	-71756.804	2.436	230.19	-2.130	-201.3
PdO-TiO ₂ -H-COONa	-71760.215			-5.541	-523.6
PdO-TiO ₂ -H-OH-H-COONa	-72230.325			-6.933	-655.1
TS	-72230.134	0.191	18.05	-6.742	-637.0
PdO-TiO₂-H-H-NaHCO₃	-72230.134			-6.742	-637.0
TS	-72226.914	3.22	304.26	-3.522	-332.8
PdO-TiO ₂ -H ₂ -NaHCO ₃	-72227.876			-4.48	-423.7

Table S2 Energies of molecules (radicals) and energy change along reactions over $(PdO)_8/(TiO_2)_{24}$ catalyst with O as the active site for H abstraction.

	E (eV)	ΔE(eV)	ΔE(kJ/mol)	Relative	Relative
				energy	energy
				(eV)	(kJ/mol)
HCOONa	-2348.272				
H ₂ O	-468.718				
Pd-TiO ₂	-67515.902				
Pd-TiO ₂ -H ₂ O	-67985.359			-0.739	-69.8
TS	-67984.597	0.762	72.00	0.023	2.2
Pd-TiO ₂ -H-OH	-67984.951			-0.331	-31.3
Pd-TiO ₂ -HCOONa	-69868.445			-4.270	-403.5
TS	-69868.405	1.096	103.56	-4.230	-399.7
Pd-TiO ₂ -H-COONa	-69869.066			-4.892	-462.2
Pd-TiO ₂ -H-OH-H-COONa	-70339.226			-6.334	-598.5
TS	-70334.72	4.506	425.77	-1.828	-172.7
Pd-TiO ₂ -H-H-NaHCO ₃	-70338.354			-5.461	-516.0
TS	-70338.186	2.129	205.14	-5.293	-500.13
Pd-TiO ₂ -H ₂ -NaHCO ₃	-70338.443			-5.550	-524.42

Table S3 Energies of molecules (radicals) and energy change along reactions over $Pd_{10}/(TiO_2)_{24}$.

	E (eV)	ΔE(eV)	ΔE(kJ/mol)	Relative	Relative
				energy (eV)	energy
					(kJ/mol)
НСООК	-1824.197				
H ₂ O	-468.718				
PdO-TiO ₂	-69406.402				
PdO-TiO ₂ -HCOOK	-71232.186			-1.587	-150.0
TS	-71231.360	0.826	78.05	-0.761	-71.9
PdO-TiO₂-H-COOK	-71232.748			-2.149	-203.0
PdO-TiO ₂ -H-OH-H-COOK	-71701.948			-2.631	-248.6
TS	-71697.793	4.155	392.60	1.524	144.0
PdO-TiO ₂ -H-H-KHCO ₃	-71701.702			-2.385	-225.4
TS	-71700.06	1.642	155.15	-0.743	-70.2
PdO-TiO ₂ -H ₂ -KHCO ₃	-71700.835			-1.518	-143.4

Table S4 Energies of molecules (radicals) and energy change along reactions over $(PdO)_8/(TiO_2)_{24}$ catalyst with HCOOK as the substrate.

•				
Entry	Reactants	H_2/μ mol in 1 h	H/D	
1	HCOONa +H ₂ O	431	-	
2	DCOONa +D ₂ O	36	11.9	
3	DCOONa +H ₂ O	67	6.5	
4	HCOONa +D ₂ O	124	3.5	

Table S5 Deuterated Isotopic tracer technique studies of the formate sodium solutiondecomposition over kv-PdO/TiNTs.

Reaction conditions: formate sodium solution concentration: 0.2 M; reaction temperature: 25 °C.

 Table S6 kv-PdO/TiNTs catalyzed gas evolution in different catalytic systems.

Entry ^a	H_2/μ mol in 1 h	H_2/μ mol in 2 h	CO ₂
HCOONa	550	960	-
HCOONa/Dyes	Trace	230	Trace
Dyes	_	-	_

^aDyes = AR1, MO or AO7; The concentration of HCOONa is 1 M; the concentration of Dyes is 1×10^{-4} M.

Fig. S20 Concentration changes of AR1 in catalytic system of AR1 solution (10 μ M) + kv-PdO/TiNTs; inset shows the visual color change as a function of reaction time.

Fig. S21 MO degradation efficiency of Pd-based catalysts calcined under different atmosphere.