Supplementary information

Reduced Co₃O₄ Nanowires with Abundant Oxygen Vacancies as

Efficient Free-standing Cathode for Li-O₂ Batteries

Fang Wang, Wang Liu, Hui Wang, Chengcheng Meng, Qixing Wu, Xuelong Zhou, Zhongkuan Luo*

College of Chemistry and Environmental Engineering, Shenzhen University,

Shenzhen 518060, Guangdong, China

*Corresponding author. Tel: 0755-26557381; Fax: 0755-26536141

E-mail addresses: lzk@szu.edu.cn (Z. Luo).

 Co_3O_4 nanoarrays grown directly on Ni foam substrate was obtained by facile hydrothermal and calcination process. With the increase of NH₄F content, the loading mass density of nanoarrays became higher, leading to three types of morphology, which were nanowires, nanonorods and nanosheets, respectively (Fig. S1).

Fig. S1 SEM images of (a, b, c) Co₃O₄ nanowires, (d, e, f) Co₃O₄ nanorods, (g, h, i) Co₃O₄

nanosheets.

The three samples were analyzed by transmission electron microscopy (Fig. S2). It can be seen that the nanoarrays surface was rough, consisting of many small nanoparticles with copious mesopores. As shown in the select area electron diffraction, nanowires and nanosheets show polycrystalline characteristics, nanorods displayed a quasi-single crystal structure. The high–resolution TEM images in Fig. S2b, d, f reveal three types of lattice fringes with interplane spacings of 0.46, 0.28 and 0.23nm, respectively, corresponding to the (111), (220) and (222) planes of the cubic spinel Co_3O_4 phase.

Fig. S2 (a, c, e) TEM, selected area electron diffraction (SAED)inset, and (b, d, f) HRTEM images

of Co₃O₄ nanowires, nanorods and nanosheets, respectively.

The XRD pattern (Fig. S3a) reveals the crystal structure and phase purity of three types of Co_3O_4 nanoarrys. The three typical peaks were derived from Ni foam, other diffraction peaks all correspond to spine Co_3O_4 crystalline structure (PDF#43-1003). No spare impurity peaks are detected, which implied there was no impurities produced during the hydrothermal and calcination processes. The peaks at 31.27°, 36.845°, 59.35° and 65.23° correspond to (220), (311), (511) and (440) planes of cubic Co_3O_4 , respectively.

Nitrogen adsorption desorption isotherms of three kinds of nanoarrays are shown in the Fig. S3 b-d, they revealed the typical type-IV curve with a significant hysteresis loop at the relative pressure of 0.4-0.9. It can also be seen from the pore size distribution curve. Table S1 shows the specific surface area, pore volume and pore size of the three samples. It can be seen that the nanowire array has the largest specific surface area, and also exhibits the largest pore volume and the appropriate pore size. Compared with the other two nanoarrays, the nanowire array is more favorable for the reversible formation and decomposition of the discharge products on the surface of the nanoarrays.

Table S1 Comparison of the specific surface area, pore volume and BJH pore size of three types of

Sample	Surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	BJH Pore size (nm)
Nanowires	16.116	4.20×10 ⁻²	4.42
Nanorods	14.125	2.66×10 ⁻²	4.42
Nanosheets	5.4432	2.08×10 ⁻²	10.89

 $Co_3O_4\,nanoarrays.$

Fig. S3 (a) XRD patterns of Co_3O_4 nanoarrays. N₂ adsorption–desorption isotherms and the corresponding pore size distribution curves of Co_3O_4 (b) nanowires, (c) nanorods, and (d)

nanosheets.

Fig.S4 FESEM images of pristine Co₃O₄@Ni(a), r-Co₃O₄@Ni-0.5(b), r-Co₃O₄@Ni-1(c) and r-

Co₃O₄@Ni-2(d)

Fig. S5 The TEM images and SADE(inset) of pristine Co₃O₄(a), r-Co₃O₄-0.5(b), r-Co₃O₄-1(c) and

r-Co₃O₄-2(d).

Fig. S6 N₂ adsorption–desorption isotherms and the corresponding pore size distribution curves (inset) of pristine Co_3O_4 @Ni(a), r-Co₃O₄@Ni-0.5(b), r-Co₃O₄@Ni-1(c) and r-Co₃O₄@Ni-2(d).

Table S2 Comparison of the specific surface area, pore volume and BJH pore size of Co₃O₄ @Ni

Sample	BET Surface Area (m ² g ⁻¹)	Pore Volume (cm ³ g ⁻¹)	BJH Pore size (nm)
Co ₃ O ₄ @Ni	16.624	0.0369	3.47
r-C03O4@Ni-0.5	20.344	0.041459	3.47
r-Co ₃ O ₄ @Ni-1	21.368	0.042898	3.92
r-Co ₃ O ₄ @Ni-2	17.882	0.0385	3.92

and reduced Co₃O₄@Ni

Fig. S7 XRD patterns of pristine Co₃O₄@Ni and reduced Co₃O₄@Ni

Fig. S8 (a) XPS survey spectra (b) Co 2p spectra of pristine Co₃O₄@Ni, r-Co₃O₄@Ni-0.5, r-

Co₃O₄@Ni-1 and r-Co₃O₄@Ni-2.

Table S3 The molar percentage of Co²⁺ and Co³⁺ in Co₃O₄@Ni and reduced Co₃O₄@Ni

Sample	Co^{2+} (mol%)	Co ³⁺ (mol%)
C03O4@Ni	33.78	66.22
r-Co ₃ O ₄ @Ni-0.5	31.51	64.89
r-C03O4@Ni-1	39.69	60.31
r-C0 ₃ O ₄ @Ni-2	42.79	57.21

Fig. S9 O1s XPS spectra of pristine Co₃O₄@Ni and reduced Co₃O₄@Ni.

Table S4 EDS microanalysis of Co and O atomic ratio in pristine and reduced Co₃O₄@Ni

Element Sample	O (At%)	Co (At%)
C03O4@Ni	68.91	31.09
r-C03O4@Ni-0.5	63.75	36.25
r-C03O4@Ni-1	62.82	37.18
r-C0 ₃ O ₄ @Ni-2	53.58	46.42

electrodes.

Fig. S10 O₂-TPD spectra of pristine Co₃O₄@Ni and reduced Co₃O₄@Ni.

Fig. S11 Comparison of discharge/charge profiles of Li-O2 batteries with pristine Co3O4@Ni and

reduced Co₃O₄@Ni electrodes at 50 mA g⁻¹.

Fig.S12 Comparison of discharge/charge profiles of $Li-O_2$ batteries with pristine Co_3O_4 @Ni and r- Co_3O_4 @Ni-1 electrodes at the current density of 50 mA g⁻¹ in O_2 and Ar

Fig.S13 Cycling performance of Li-O₂ batteries at the current density of 200 mA g^{-1} with pristine Co₃O₄@Ni (a) and r-Co₃O₄@Ni-1 (b) electrodes with the cutoff capacity of 300 mAh g^{-1} ; with pristine Co₃O₄@Ni (c) and r-Co₃O₄@Ni-1 (d) electrodes with the cutoff capacity of 500 mAh g^{-1} .

Fig. S14 Cycling performance of Li-O₂ batteries with pristine Co₃O₄@Ni(a) r-Co₃O₄@Ni-0.5(b), r-Co₃O₄@Ni-1(c) and r-Co₃O₄@Ni-2(d) electrodes at 200 mA g⁻¹ with the cutoff capacity of 300

mAh g⁻¹.

Fig. S15 Cycling performance of Li-O₂ batteries with pristine Co₃O₄@Ni(a) and r-Co₃O₄@Ni-1(b)

electrodes at 100 mA g⁻¹ with the cutoff capacity of 300 mAh g⁻¹.

Fig. S16 TEM images of composited RuO₂/Co₃O₄ nanowires: (a, b) Low magnification TEM

images; (c) HRTEM image; (d) SEAD pattern

Fig. S17 (a)Comparison of discharge/charge profiles of Li-O₂ batteries with $Co_3O_4@Ni$, $RuO_2/Co_3O_4@Ni$ and $r-Co_3O_4@Ni$ -1 cathodes at various current densities of 50mA g⁻¹, 100 mA g⁻¹ and 200 mA g⁻¹. (b) Cycling performance of Li-O₂ batteries with $RuO_2/Co_3O_4@Ni$ electrode at 200 mA g⁻¹ with the cutoff capacity of 300mAh g⁻¹.

Catalyst	Specific	Cycle	Current	Fixed	Voltage	Electrolyte	Ref
	capacity	number	density	capacity	, onuge	210001 01900	1101
BuO /NiO/Ni foom	3465mAh g ⁻¹ ,	> 200	250 mA g-	500 m A h g-l	254237	1.0 M LiTFSI/	[1]
	$250 mA \ /g_{RuO2}$	~200	¹ RuO2	500 mAn g ¹	2. 3-4 .2 V	TEGDME	[1]
	1523 mAh g-1		3200 m A			1.0 M	
RuO ₂ /MnO ₂ /Ni/G	3200 mA s^{-1}	170	3200 IIIA	1000 mAh g ⁻¹	2.0-4.07V	LiTFSI+0.05MLiI	[2]
	5200 IIIA g *		g			/TEGDME	
TiO /BuO /Ti mash	800mAh g ⁻¹ ,	~ 80	100 mA g-	$300 \text{ mAh} \text{ s}^{-1}$	2245V	0.1MLiClO ₄ /	[2]
$110_2/\text{Ku}0_2/11\text{ mesu}$	50 mA g ⁻¹ □	>80	1	500 mAn g .	2.3-4.3 V	DMSO	[3]
Ru/Co ₃ O ₄	~.9700mAh g-		200 m \ a-			1M Lice so/	
nanosheets/carbon	1 200 m A g-1	72	200 IIIA g	1000 mAh g ⁻¹	2.0-4.5V	TECDME	[4]
textiles	,200 IIIA g *		-			TEODWIE	
DuO (stainlass staal	1000mAh g ⁻¹ ,	>100	200 mA g ⁻	500 mAh a-1	2640V	0.5M	[5]
RuO ₂ /stanness steel	100 mA g ⁻¹	>100	1 50	500 mAii g	2.0 - 4.0V	LiClO ₄ /DMSO	[2]
RuO ₂ /Co ₃ O ₄	3506 mAh g ⁻¹ ,	100	200 mA g ⁻	$200 \text{ mAh} \text{ s}^{-1}$	20451	1.0 M LiTFSI/	This
nanowires/Ni foam	50 mA g ⁻¹	109	1	SUU IIIAN g	2.0-4.3 V	TEGDME	work

Table S5 Summary of electrochemical performance of Li–O₂ batteries with RuO₂ or Ru modified catalyst.

Fig. S18 XRD patterns, XPS spectra and Raman spectra of $Co_3O_4@Ni(a, b, c)$, $RuO_2/Co_3O_4@Ni(d, e, f)$ and r-Co₃O₄@Ni-1(g, h, i) electrode after fully discharge and charge, respectively.

Fig. S19 SEM images of Pristine Co₃O₄@Ni electrodes after discharge to (a)500 mAh g⁻¹,

(b)1000mAh g⁻¹ and (c)2.0 V at the current density of 0.1 mA cm⁻².

Fig. S20 SEM images of RuO₂/Co₃O₄@Ni electrodes after discharge to (a)500 mAh g⁻¹, (b)1000

mAh g⁻¹ and (c)2.0 V at the current density of 0.1 mA cm⁻².

Fig. S21 SEM images of r-Co₃O₄@Ni-1 electrodes after discharge to (a)500 mAh g⁻¹, (b)1000

mAh g⁻¹ and (c)2.0 V at the current density of 0.1 mA cm⁻².

Table S6 Summary of electrochemical performance of Li–O2 batteries

Catalyst	Specific capacity	Cycle	Current	Fixed	Voltage	Electrolyte	Ref
Curring St	Specific capacity	number	ımber density capa	capacity	, on go	Liettolyte	
		258 cycles					
		with the				1 M LiClO./	
Co.O. nonowiros/Ni		supplement	100mA g ⁻¹	500mAh g ⁻¹		TEGDME	
foom	5337mAh g ⁻¹	of			2.0-4.3V	electrolyte	[6]
IUam		electrolyte				with Dd NCa	
		several				with Pu NCS	
		times					
Reduced Co ₃ O ₄	4565 mAh g ⁻¹ ,	00	100	500 A 1	254234	0.5 M LiClO ₄	[7]
nanosheets/Ni foam	50 mA g ⁻¹	90	100mA g ⁻¹	500mAh g ⁻¹	2.5-4.3V	/DMSO	[/]
Co ₃ O ₄ nanowires/Ni	1380mAh g ⁻¹ ,	5.4	100 11	300mAh g ⁻¹ ,	204234	1 M LiCF ₃ SO ₃	[0]
foam	50mA g ⁻¹	54	100mA g ⁻¹		2.0-4.3 V	/TEGDME	[8]
Ru/ Co ₃ O ₄	6434 mAh g ⁻¹ ,	110	100 1	200	2.0.4.237	1M LiClO ₄ /	[0]
nanowires/Ni foam	100 mA g ⁻¹	112	100 mA g ⁻¹	300mAn g ⁻¹	$1 \text{Ah g}^{-1} = 2.0-4.3 \text{V}$	TEGDME	[9]
Co ₃ O ₄ nanosheets/Ni	11882 mAh g ⁻¹	00	2 00 h -1	500 41 -1	2.0.4.514	1 M LiTFSI/	[10]
foam	,100 mA g ⁻¹	80	200 mA g ⁻¹	500mAh g ⁻¹	2.0-4.5V	TEGDME	[10]
	10407 41 1					1M	
$\mathbf{Pd}/\mathbf{Co}_{3}\mathbf{O}_{4}$	1842. /mAh g ⁻¹ ,	270	0.1mA cm ⁻²	300 mAh g ⁻¹	2.0-4.2V	LiN(CF ₃ SO ₂) ₂	[11]
nanowires/Ni foam	0.05mA/cm ²					/TEGDME	
Pd/ Co ₃ O ₄	1551 mAh g ⁻¹ ,					1 M LiTFSI/	
nanosheets/Ni	50 mA g ⁻¹	72	100 mA g ⁻¹	300 mAh g ⁻¹	2.0-4V	TEGDME	[12]
Reduced Co ₃ O ₄	4448 mAh g ⁻¹ ,	1(2	200 1	200 11 1	2.0.4.51	1 M LiTFSI/	This
nanowires/Ni foam	50 mA g ⁻¹	162	200 mA g ⁻¹	300 mAh g ⁻¹	2.0-4.5V	TEGDME	work

with Co₃O₄-based free-standing cathodes.

To investigate the valence change of Co element, XPS test was conducted on the r-Co₃O₄@Ni-1 electrode after 5 cycles (Fig. S22) and 50 cycles (Fig. S23). The Co 2p spectra can be also deconvoluted into the characteristic peaks of Co²⁺ and Co³⁺. The molar percentages of Co²⁺ and Co³⁺ before and after 5, 50 cycles are presented in Table S7. The percentage of Co³⁺ slightly increase after 5 and 50 cycles, indicating the oxidation of r-Co₃O₄@Ni-1 material during the discharge/charge process. The gradual oxidation of electrode material is also one of the reasons for the increasing overpotential during the cycle test[13].

Fig. S22 Co 2p XPS of r-Co₃O₄@Ni-1 electrode after 5th cycle.

Fig. S23 Co 2p XPS of r-Co₃O₄@Ni-1 electrode after 50th cycle.

Sample	Co ²⁺ (mol%)	Co ³⁺ (mol%)
r-Co ₃ O ₄ @Ni-1	39.69	60.31
5 th charged r-Co ₃ O ₄ @Ni-1	36.21	63.79
50 th charged r-Co ₃ O ₄ @Ni-1	35.75	64.25

Table S7 The molar percentage of Co²⁺ and Co³⁺ in r-Co₃O₄@Ni-1 before and after 5th, 50th cycle

The EIS spectrums of Li-O₂ batteries with the pristine and reduced Co_3O_4 @Ni cathode are shown in Fig. S24, respectively. The spectra all consist of an arc in the high frequency region and a straight line in low frequency region. Similar internal resistances of the batteries can be observed for the similar internal structure of the cathodes. While the interface impedance and charge transfer impedance increased after NaBH₄ treatment, which may result from the slightly surface effect on 3D network structure during reduction treatment.

Fig. S24 EIS spectrums of three kinds of Li-O₂ batteries with the pristine and reduced

C_{0_3}	O_4	@Ni	cath	node
c_{0}	$\mathbf{\nabla}_{4}$	(1) 11	oun	iouc

Table S8Electrolyte resistance (R_s) , interfacial resistance (R_{int}) , calculated from impedance plotsby fitting using the equivalent circuit

Sample	R _s (Ω)	R_{int} (Ω)
Co ₃ O ₄ @Ni	9.002	16.3
r-Co ₃ O ₄ @Ni-0.5	9.777	27.02
r-Co ₃ O ₄ @Ni-1	10.01	33
r-Co ₃ O ₄ @Ni-2	9.654	32.41

- [1] P. Tan, Z.H. Wei, W. Shyy, T.S. Zhao, X.B. Zhu, Energy Environ. Sci. 9 (2016) 1783-1793.
- [2] G. Wang, L. Huang, W. Huang, J. Xie, G. Du, S. Zhang, P. Zhu, G. Cao, X. Zhao, Nanoscale 7 (2015) 20614-20624.
- [3] Z. Guo, C. Li, J. Liu, X. Su, Y. Wang, Y. Xia, J. Mater. Chem. A 3 (2015) 21123-21132.
- [4] Q.-c. Liu, J.-j. Xu, Z.-w. Chang, D. Xu, Y.-b. Yin, X.-y. Yang, T. Liu, Y.-s. Jiang, J.-m. Yan, X.-b. Zhang, Part. Part. Syst. Char. 33 (2016) 500-505.
- [5] C. Zhang, D. Tang, X. Hu, X. Liu, T. Zhang, H. Zhou, Energy Stor. Mater. 2 (2016) 8-13.
- [6] C. Cao, Y. Yan, H. Zhang, J. Xie, S. Zhang, B. Pan, G. Cao, X. Zhao, ACS Appl. Mater. Inter. (2016).
- [7] C. Shen, Z. Wen, F. Wang, X. Huang, K. Rui, X. Wu, RSC Adv. 6 (2016) 16263-16267.
- [8] M. He, P. Zhang, S. Xu, X. Yan, ACS Appl. Mater. Inter. 8 (2016) 23713-23720.
- [9] L. Huang, Y. Mao, G. Wang, X. Xia, J. Xie, S. Zhang, G. Du, G. Cao, X. Zhao, New J. Chem. 40 (2016) 6812-6818.
- [10] F. Wu, X. Zhang, T. Zhao, R. Chen, Y. Ye, M. Xie, L. Li, J. Mater. Chem. A 3 (2015) 17620-17626.
- [11] L. Leng, X. Zeng, H. Song, T. Shu, H. Wang, S. Liao, J. Mater. Chem. A 3 (2015) 15626-15632.
- [12] R. Black, B. Adams, L.F. Nazar, Adv. Funct. Mater. 2 (2012) 801-815.
- [13] C. Shen, Z. Wen, F. Wang, T. Wu, X. Wu, ACS Catal. 6 (2016) 4149-4153.