Supporting information for

Insight into the stereoselectivity of TS-1 in epoxidation of *cis/trans*-2-hexene: a computational study

Mengzhao Li, Xiaoyue Yan, Meiyu Zhu, Meiqi Wang, Danhong Zhou*

College of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, People's Republic of China

Contents:

Scheme S1 Generation processes of Ti-hydroperoxo intermediates and the equations for calculation of the formation energies of the Ti-hydroperoxo intermediates.

Table S1 The total electronic energies of optimized molecules and models at the theoretical level of $\omega B97XD/6-31G(d, p)$.

Fig. S1 Optimized transition state structures of *cis*-2-hexene (a-d) and *trans*-2-hexene (e-f) on different active centers: (a, e) Ti- η^2 (OOH), (b, f) Ti- η^2 (OOH)-H₂O, (c, g) Ti- η^2 (OOH)-(H_β)H₂O, and (d, h) Ti- η^2 (OOH)-H₂O-(H_β)H₂O.

Fig. S2 Optimized structures of the epoxide products of *cis*-2-hexene (a-d) and *trans*-2-hexene (e-f) adsorbed on different active centers: (a, e) $Ti-\eta^2(OOH)$, (b, f) $Ti-\eta^2(OOH)-H_2O$, (c, g) $Ti-\eta^2(OOH)-(H_\beta)H_2O$, and (d, h) $Ti-\eta^2(OOH)-H_2O-(H_\beta)H_2O$.

Scheme S1 Generation processes of Ti-hydroperoxo intermediate in TS-1/H₂O₂/H₂O.

The formation energies of the Ti-hydroperoxo intermediates are calculated according to following equations: (1) for Ti- η^2 (OOH); (2) for Ti- η^2 (OOH)-H₂O; (3) for Ti- η^2 (OOH)-(H_β)H₂O; (4) for Ti- η^2 (OOH)-H₂O-(H_β)H₂O.

$$\Delta E = E[\text{Ti}-\eta^2(\text{OOH})] + E(\text{H}_2\text{O}) - E(\text{Ti}-\text{OH}) - E(\text{H}_2\text{O}_2)$$
(1)

$$\Delta E = E[\text{Ti}-\eta^2(\text{OOH})-\text{H}_2\text{O}] - E(\text{Ti}-\text{OH}) - E(\text{H}_2\text{O}_2)$$
(2)

$$\Delta E = E[\text{Ti}-\eta^2(\text{OOH})-(\text{H}_\beta)\text{H}_2\text{O}] - E(\text{Ti}-\text{OH}) - E(\text{H}_2\text{O}_2)$$
(3)

$$\Delta E = E[\text{Ti}-\eta^2(\text{OOH})-\text{H}_2\text{O}-(\text{H}_\beta)\text{H}_2\text{O}] - E(\text{Ti}-\text{OH}) - E(\text{H}_2\text{O}_2)-E(\text{H}_2\text{O})$$
(4)

Here, $E(H_2O)$ and $E(H_2O_2)$ are the total electronic energies of optimized H_2O and H_2O_2 molecules, respectively, and E(Ti-OH), $E[\text{Ti-}\eta^2(\text{OOH})]$, $E[\text{Ti-}\eta^2(\text{OOH})-\text{H}_2O]$, and $E[\text{Ti-}\eta^2(\text{OOH})-(H_\beta)H_2O]$ denote the total electronic energies of optimized models (136T) for Ti-OH, Ti- $\eta^2(\text{OOH})$, Ti- $\eta^2(\text{OOH})-(H_\beta)H_2O$, respectively.

Table S1 The total electronic energies of optimized molecules and models at the theoretical level of $\omega B97XD/6-31G(d, p)$.

Model	Energy (a.u.)
H ₂ O	-76.39790
H_2O_2	-151.49520
Ti-OH	-57522.97953
Ti-η ² (OOH)	-57598.08494
Ti-η ² (OOH)-H ₂ O	-57674.52100
$Ti-\eta^2(OOH)-(H_\beta)H_2O$	-57674.51584
$Ti-\eta^2(OOH)-H_2O-(H_\beta)H_2O$	-57750.95010

Fig. S1 Optimized transition state structures of *cis*-2-hexene (a-d) and *trans*-2-hexene (e-f) on different active centers: (a, e) Ti- η^2 (OOH), (b, f) Ti- η^2 (OOH)-H₂O, (c, g) Ti- η^2 (OOH)-(H_β)H₂O, and (d, h) Ti- η^2 (OOH)-H₂O-(H_β)H₂O.

Fig. S2 Optimized structures of the epoxide products of *cis*-2-hexene (a-d) and *trans*-2-hexene (e-f) adsorbed on different active centers: (a, e) $Ti-\eta^2(OOH)$, (b, f) $Ti-\eta^2(OOH)-H_2O$, (c, g) $Ti-\eta^2(OOH)-(H_\beta)H_2O$, and (d, h) $Ti-\eta^2(OOH)-H_2O-(H_\beta)H_2O$.