Supporting Information

Superior Activity and Selectivity of Heterogenized Cobalt Catalysts for Hydrogenation of Nitroarenes

Wu Li,^{+a} Jens Artz,^{+b} Cornelia Broicher,^b Kathrin Junge,^a Heinrich Hartmann,^c Astrid Besmehn,^c Regina Palkovits,^{*,b} and Matthias Beller^{*,a}

^aLeibniz-Institut für Katalyse e.V., an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany ^bInstitut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany ^cForschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 5248 Jülich, Germany

Table of Contents:

- 1. General Remarks
- 2. Procedure for the Preparation of Catalysts
- 3. Characterization of the Catalysts
- 4. General Procedure for the Hydrogenation of nitroarene
- 5. Procedure for Catalyst Recycling
- 6. ICP-OES analysis (Leaching)
- 7. Characterization Data for the Products
- 8. ¹H NMR and ¹³C NMR and Spectra of Products

1. General Remarks

N₂-Physisorption was performed on an Asap 2000 from Micromeritics. The samples were degassed for 24 hours at 300 °C and afterwards the measurement was performed at -196 °C. Inductively coupled plasma (ICP-OES) analysis was conducted with an instrument of SPECTRO Analytical Instruments, Model SPECTROFLAME. The pore structure and particle distribution of the catalyst samples were investigated via STEM imaging on a Hitachi HD-2700 electron microscope (CS-corrected, 200 kV, Cold FEG, EDX Octane T Ultra W 100 mm² SDD TEAM-Software). X-ray diffraction (XRD) was performed on a Siemens D5000 (Radiation/wavelength: Cu K-alpha, 0.15418 nm). Thermogravimetric analysis (TGA) was conducted on a STA 409 cell from Netzsch. X-ray photoelectron spectroscopy (XPS) data were obtained on a Phi5000 VersaProbe II spectrometer (ULVAC-Phi Inc., USA) using AlKα as the excitation source (1.486 keV) and operated at 50 W, 15 kV, 200 µm. Survey spectra were obtained by 187.5 eV energy, 0.8 eV step range, 100 ms/step. High resolution spectra were obtained by 23.5 eV energy, 0.1 eV step, 100 ms/step. The shift of the binding energy was corrected using C 1s level at 285 eV. Furthermore, the quantifications in at% show a relative error of 15% and was indexed to 100% with a Shirley-background and empiric device-optimized sensitivity factor.

Unless otherwise stated, reactions were performed in a 300 mL autoclave from Parr Instrument Company. Solvents were used directly without further purification. NMR-spectra were recorded on Bruker AV 300 and 400 spectrometers. Chemicals shifts (δ) are reported in ppm downfield of tetramethylsilane. The residual solvent signals were used as references for ¹H and ¹³C NMR spectra (CDCl₃: δ H = 7.26 ppm, δ C = 77.12 ppm; DMSO-*d*6: δ H = 2.50 ppm, δ C = 39.52 ppm).

2. Procedure for the Preparation of Catalysts

2.1. Synthesis of the hard-template

SBA-15 materials were synthesized according to the procedure of Zhao *et al.*¹ in order to use them as templates for the formation of nanostructured carbon. Ordered mesoporous silica templates were prepared using the surfactant $EO_{20}PO_{70}EO_{20}$ (P123), and TEOS as silica source. P123 (6.0 g) was completely dissolved in 2 M HCl (180 mL) overnight at room temperature. TEOS (12.6 mL) was added to the stirred mixture at 35 °C. The mixture was placed in the oven at 120 °C for 24 h. The white precipitates were filtered by vacuum filtration and washed twice with distilled water and twice with ethanol. The product was dried at 80 °C for 24 h and calcined at 550 °C for 6 h.

2.2. Synthesis of nanostructured carbon (CMK-3-CoPc)

Ordered mesoporous carbon materials (CMK-3) were formed using the same procedure as introduced by Ryoo *et al.*² CMK-3 was synthesized with Cobalt phthalocyanine (CoPc) as a carbon source by replicating mesoporous silica SBA-15 (hard-template). The pores of SBA-15 were filled with CoPc via different impregnation methods (see 2.2.1-2.2.3). The mixture was then placed into an oven at 100 °C for 1 h, 350 °C for 1 h and subsequently carbonized at 990°C for 1 h under nitrogen atmosphere. To leach the silica template from the silica-Co-phthalocyanine composite, the resulting black powder was treated with 5 M NaOH solution at 100 °C for 24 h. The solution was then centrifuged at 6000 rpm for 15 minutes, followed by decantation of the supernatant solution. The sediment was dispersed in distilled water. Centrifugation was repeated ten times to ensure a neutral pH of the supernatant solution. The silica leaching step was then repeated. The replica was dried at 100 °C and ordered mesoporous carbon materials denoted as CMK-3-CoPc were obtained (see Scheme S1).

2.2.1 Grinding (solid/solid-impregnation; denoted as GR)

CoPc (1.0 g) was added to SBA-15 (1.0 g) and both materials were physically mixed together thoroughly via pestle and mortar until a homogeneous colored powder was formed.

2.2.2 Wet Impregnation (denoted as WI)

CoPc (1.0 g) was dissolved in ethanol (50 mL) and SBA-15 (1.0 g) was added to the solution. The mixture was heated up to 60 $^{\circ}$ C for 24 h and stirred until the solution turned colorless. The solvent was evaporated under reduced pressure.

2.2.3. Incipient Wetness Impregnation (denoted as IWI)

SBA-15 (1.0 g) was impregnated with CoPc (1.0 g) dissolved in ethanol (2 mL). The metal solution was added dropwise to SBA-15, thus only wetting the solid template by the incipient wetness principle.

(1) D. Zhao, J. Feng, Q. Huo, N. Melosh, G. Fredrickson, B. Chmelka, G. Stucky, Science 1998, 279, 548–52.

(2) L. Solovyov, N. Shmakov, V. I. Zaikovskii, S. H. Joo, R. Ryoo, Carbon 2002, 40, 2477–2481.

3. Characterization of the Catalysts

3.1. Thermogravimetric analysis

Figure S1. Thermogravimetric analysis (TGA) for CMK-3-CoPc-WI.

3.2. X-ray Photoelectron Spectroscopy (XPS)

Figure S2. XPS survey scan for CoPc (template-free) and CMK-3-CoPc-WI prior and after 5 catalytic cycles. The survey spectra indicate that no other metallic or inorganic contaminants are present. The In 3d signal (marked by *) originates from the Indium-foil used for fixation of the powder sample.

Figure S3. XPS C 1s (left) and O 1s spectra (right) for CoPc (template-free) and CMK-3-CoPc-WI prior and after 5 catalytic cycles; O 1s species can be assigned as follows: (O 1s-1, red) O=C-N, C=O (aromatic); (O 1s-2, blue) C-O-C (aromatic), epoxy-, O-C-O, C=O (aliphatic), H₂O; (O 1s-3, green) H₂O, O₂/C; (O 1s-4, light blue) O₂/C; (O 1s-5, magenta) CoO.

Figure S4. XPS N 1s (left) and Co 2p spectra (right) for CoPc (template-free) and CMK-3-CoPc-WI prior and after 5 catalytic cycles; Co $2p_{3/2}$ spectra were curve fitted based on the literature peak set of CoO and Co₃O₄ multiplets (M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. St. C. Smart, *Appl. Surf. Sci.* 2011, **257**, 2717-2730).

Figure S5. STEM analysis of different regions within the recycled catalyst CMK-3-CoPc-WI- (recyc.) after 5 successive runs.

4. General Procedure for the Hydrogenation of nitroarene (GR)

In a 4 mL vial fitted with magnetic stirring bar and septum cap, cobalt catalyst (30 mg) was added. Then, a needle was inserted in the septum which allows gaseous reagents to enter. Solvent (2-methyltetrahydrofuran (MTHF)/H₂O 1.5 mL/0.5 mL) and nitroarene (0.5 mmol) were added, independently. The vials (up to eight) were placed into a 300 mL steel Parr autoclave. The autoclave was flushed with hydrogen 10 times at 20 bar and finally pressurized to the desired value (20 bar). Then it was placed into an aluminium block and heat to the desired temperature (40 °C) from room temperature. At the end of the reaction, the autoclave was quickly cooled down at room temperature with an ice bath and vented. Finally, the samples were removed from the autoclave, and dodecane (89 mg, 0.52 mmol) was added to the crude reaction mixture as internal standard, then diluted with aceton. The reaction mixture was centrifuged and the liquid was analysed at the GC-FID.

5. Procedure for Catalyst Recycling

In a 4 mL vial fitted with magnetic stirring bar and septum cap, cobalt catalyst (30 mg) was added. Then, a needle was inserted in the septum which allows gaseous reagents to enter. Solvent (MTHF/H₂O 1.5 mL/0.5 mL) and nitroarene (0.5 mmol) were added, independently. The vials (up to eight) were placed into a 300 mL steel Parr autoclave. The autoclave was

flushed with hydrogen 10 times at 20 bar and finally pressurized to the desired value (20 bar). Then it was placed into an aluminium block and heat to the desired temperature (40 °C) from room temperature. At the end of the reaction, the autoclave was quickly cooled down at room temperature with an ice bath and vented. Finally, the samples were removed from the autoclave, and dodecane (89 mg) was added to the crude reaction mixture as internal standard, and then diluted with aceton. The reaction mixture was centrifuged and the liquid was analysed at the GC-FID. The catalyst was isolated by centrifugation and reused for next reaction.

Datum: 16. November 2017

Albert-Einstein-Straße 29 a 18059 Rostock

ICP-OES Analyse

A. Simmula, vertreten durch K.Struve Tel. 323 ANALYSENERGEBNIS /KURZBERICHT

AUFTRAG

4 Anzahl der Proben: 5 Flüssig

Auftragsnummer: 8459

Auftraggeber: Wu, Li

Institution: LIKAT

Probenvorbehandlung: ohne

durch Auftraggeber in HCL aufgeschlossen und verdünnt vorliegend.

ANALYSE Elemente: Co

durchgeführt von: K.Struve

Ergebnis: 09.11.2017

Proben-Nr.	Proben-	Element	1. Messung	2. Messung		
	bezeichnung		mg/L	mg/L		
8459-P1	909-1	Со	n.n.	n.n.		
8459-P2	909-2	Со	n.n.	n.n.		
8459-P3	909-3	Со	n.n.	n.n.		
8459-P4	909-4	Со	0,111	0,126		
8459-P5	909-5	Со	0,149	0,143		

Bemerkungen:

Unterschrift/ Datum:

Stone, 16. M. 2017

Anlagen(Erläuterungen)/ Abbildungen

7. Characterization Data for the Products

NH₂ Me

2b 92%

According to **GP**, catalyst (31 mg), 1-methyl-4-nitrobenzene **1b** (68 mg, 0.50 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2b** (49 mg, 0.46 mmol, 92%) was obtained as a solid.

 ^1H NMR (300 MHz, CDCl_3) δ 7.08–6.89 (m, 2H), 6.69–6.54 (m, 2H), 3.32 (s, 3H), 2.25 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 143.78, 129.87, 128.02, 115.47, 20.58.

2c 98%

According to **GP**, catalyst (31 mg), 1-chloro-4-nitrobenzene **1c** (79 mg, 0.50 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2c** (63 mg, 0.49 mmol, 98%) was obtained as a solid.

 ^{1}H NMR (300 MHz, CDCl_3) δ 7.15–7.04 (m, 2H), 6.65–6.53 (m, 2H), 3.55 (s, 2H). ^{13}C NMR (75 MHz, CDCl_3) δ 145.46, 129.62, 123.66, 116.77.

2d 98%

According to **GP**, catalyst (31 mg), 1-bromo-4-nitrobenzene **1d** (100 mg, 0.50 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2d** (83 mg, 0.49 mmol, 98%) was obtained as a solid.

 ^{1}H NMR (300 MHz, CDCl_3) δ 7.41–7.10 (m, 2H), 6.77– 6.43 (m, 2H), 3.59 (s, 2H). ^{13}C NMR (75 MHz, CDCl_3) δ 145.52, 132.08, 116.81, 110.24.

2e 99%

According to **GP**, catalyst (30 mg), 1-methoxy-4-nitrobenzene **1e** (80 mg, 0.52 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2e** (65 mg, 0.52 mmol, 99%) was obtained as a liquid.

¹H NMR (300 MHz, CDCl₃) δ 6.75 (d, *J* = 8.9 Hz, 2H), 6.64 (d, *J* = 8.9 Hz, 2H), 3.74 (s, 3H), 3.39 (s, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 152.88, 140.04, 116.50, 114.90, 55.81.

2f 99%

According to **GP**, catalyst (30 mg), 1-ethoxy-4-nitrobenzene **1f** (86 mg, 0.51 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2f** (70 mg, 0.51 mmol, 99%) was obtained as a solid.

¹H NMR (300 MHz, CDCl₃) δ 6.84–6.69 (m, 2H), 6.63 (d, *J* = 8.7 Hz, 2H), 3.95 (q, *J* = 7.0 Hz, 2H), 3.34 (s, 2H), 1.37 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 152.16, 139.99, 116.50, 115.75, 64.12, 15.06.

2g 94%

According to **GP**, catalyst (31 mg), 1-nitro-3-(trifluoromethyl)benzene **1g** (95 mg, 0.50 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2g** (75 mg, 0.47 mmol, 94%) was obtained as a solid.

¹H NMR (300 MHz, CDCl₃) δ 7.18–7.09 (m, 1H), 6.88 (ddq, J = 7.7, 1.6, 0.8 Hz, 1H), 6.78 (ddt, J = 2.3, 1.5, 0.7 Hz, 1H), 6.70 (ddq, J = 8.0, 2.3, 0.7 Hz, 1H), 3.69 (s, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 146.85, 131.74 (d, J = 31.9 Hz), 129.86, 126.14, 122.53, 119.00–116.34(m), 115.12 (q, J = 4.0 Hz), 111.43 (q, J = 3.9 Hz).

According to **GP**, catalyst (29 mg), (3-nitrophenyl)methanol **1h** (77 mg, 0.50 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2h** (60 mg, 0.49 mmol, 98%) was obtained as a solid.

¹H NMR (300 MHz, CDCl₃) δ 7.20–7.05 (m, 1H), 6.76–6.68 (m, 2H), 6.61 (dddt, *J* = 7.9, 2.4, 1.0, 0.4 Hz, 1H), 4.59 (q, *J* = 0.6 Hz, 2H), 2.83 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 146.76, 142.37, 129.65, 117.24, 114.53, 113.71, 65.49.

NH₂ NHa

2i 96%

According to **GP**, catalyst (31 mg), 3-nitroaniline **1i** (71 mg, 0.51 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2i** (53 mg, 0.49 mmol, 96%) was obtained as a liquid.

¹H NMR (300 MHz, CDCl₃) δ 6.92–6.76 (m, 1H), 6.02 (dd, *J* = 7.9, 2.2 Hz, 2H), 5.91 (td, *J* = 2.2, 0.4 Hz, 1H), 3.42 (s, 4H).

¹³C NMR (75 MHz, CDCl₃) δ 147.59, 130.20, 105.99, 102.03.

2j 90%

According to **GP**, catalyst (32 mg), 1-fluoro-2-nitrobenzene **1j** (72 mg, 0.51 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2j** (51 mg, 0.46 mmol, 90%) was obtained as a liquid.

¹H NMR (300 MHz, CDCl₃) δ 7.06 – 6.89 (m, 2H), 6.87–6.61 (m, 2H), 3.67 (s, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 153.41, 150.25, 134.59 (d, J = 12.6 Hz), 124.54 (d, J = 3.6 Hz), 118.73 (d, J = 6.8 Hz), 117.04 (d, J = 3.5 Hz), 115.44, 115.20.

According to **GP**, catalyst (30 mg), 1-chloro-2-nitrobenzene **1k** (82 mg, 0.52 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2k** (66 mg, 0.52 mmol, 99%) was obtained as a liquid.

¹H NMR (300 MHz, CDCl₃) δ 7.16 (ddd, *J* = 8.0, 1.5, 0.3 Hz, 1H), 7.02–6.94 (m, 1H), 6.69 (ddd, *J* = 8.0, 1.5, 0.3 Hz, 1H), 6.61 (ddd, *J* = 8.0, 7.3, 1.5 Hz, 1H), 3.58 (t, *J* = 6.1 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 129.55, 127.75, 119.17, 116.01.

2I 99%

According to **GP**, catalyst (30 mg), 2-nitrobenzamide **1I** (82 mg, 0.49 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2I** (67 mg, 0.49 mmol, 99%) was obtained as a solid.

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.73 (s, 1H), 7.53 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.20–7.10 (m, 1H), 7.07 (s, 1H), 6.68 (d, *J* = 8.3 Hz, 1H), 6.56 (s, 2H), 6.48 (t, *J* = 7.5 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.76, 150.64, 132.35, 129.21, 116.86, 114.83, 114.12.

2m 90%

According to **GP**, catalyst (30 mg), 1-ethoxy-2-nitrobenzene **1m** (81 mg, 0.49 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2m** (60 mg, 0.44 mmol, 90%) was obtained as a liquid.

¹H NMR (400 MHz, CDCl₃) δ 6.83–6.70 (m, 3H), 4.07 (q, *J* = 7.0 Hz, 2H), 3.70 (s, 2H), 1.44 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 146.81, 136.12, 121.05, 118.70, 115.30, 111.57, 63.84, 15.10.

2n >99%

According to **GP**, catalyst (29 mg), 4-chloro-1-methyl-2-nitrobenzene **1n** (85 mg, 0.50 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2n** (70 mg, 0.50 mmol, >99%) was obtained as a liquid.

¹H NMR (300 MHz, CDCl₃) δ 6.99–6.88 (m, 1H), 6.67 (d, *J* = 7.3 Hz, 2H), 3.60 (s, 2H), 2.12 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 145.69, 132.17, 131.42, 120.72, 118.40, 114.63, 16.91.

2o >99%

According to **GP**, catalyst (30 mg), 1-bromo-4-methyl-2-nitrobenzene **1o** (105 mg, 0.49 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2o** (90 mg, 0.49 mmol, >99%) was obtained as a liquid.

¹H NMR (300 MHz, CDCl₃) δ 7.30 (d, *J* = 8.1 Hz, 1H), 6.68–6.58 (m, 1H), 6.54–6.42 (m, 1H), 3.98 (s, 2H), 2.26 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 143.72, 138.48, 132.30, 120.68, 116.64, 106.30, 21.12.

According to **GP**, catalyst (31 mg), 2-bromo-1-methyl-3-nitrobenzene **1p** (106 mg, 0.50 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2p** (90 mg, 0.49 mmol, 99%) was obtained as a solid.

¹H NMR (300 MHz, CDCl₃) δ 7.01 (t, *J* = 7.7 Hz, 1H), 6.64 (tdd, *J* = 7.7, 1.5, 0.8 Hz, 2H), 4.07 (s, 2H), 2.39 (s, 3H).

2q 98%

According to **GP**, catalyst (29 mg), 3-nitropyridine **1q** (62 mg, 0.50 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2q** (45 mg, 0.48 mmol, 98%) was obtained as a liquid.

¹H NMR (300 MHz, CDCl₃) δ 8.05 (dd, J = 2.8, 0.8 Hz, 1H), 7.96 (dd, J = 4.7, 1.5 Hz, 1H), 7.03 (ddd, J = 8.2, 4.6, 0.8 Hz, 1H), 6.93 (ddd, J = 8.2, 2.8, 1.5 Hz, 1H), 3.61 (s, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 142.76, 139.78, 137.38, 123.82, 121.56.

2r 98%

According to **GP**, catalyst (31 mg), 8-nitroquinoline **1r** (87 mg, 0.50 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2r** (71 mg, 0.49 mmol, 98%) was obtained as a solid.

¹H NMR (300 MHz, CDCl₃) δ 8.76 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.06 (ddd, *J* = 8.3, 1.7, 0.4 Hz, 1H), 7.42–7.28 (m, 2H), 7.15 (dd, *J* = 8.2, 1.3 Hz, 1H), 6.93 (dd, *J* = 7.5, 1.3 Hz, 1H), 4.82 (s, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 147.41, 144.01, 138.37, 136.16, 128.94, 127.49, 121.38, 116.08, 110.19.

2s >99%

According to **GP**, catalyst (31 mg), 4-nitrobenzo[c][1,2,5]thiadiazole **1s** (97 mg, 0.54 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2s** (80 mg, 0.53 mmol, >99%) was obtained as a solid.

¹H NMR (300 MHz, CDCl₃) δ 7.42–7.28 (m, 2H), 6.59 (ddd, *J* = 6.8, 1.4, 0.5 Hz, 1H), 4.69 (s, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 155.87, 147.88, 139.01, 131.30, 110.11, 106.70.

2t >99%

According to **GP**, catalyst (31 mg), 4-nitrobenzonitrile **1t** (76 mg, 0.51 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2t** (60 mg, 0.51 mmol, >99%) was obtained as a solid.

¹H NMR (300 MHz, CDCl₃) δ 7.38 (d, J = 8.5 Hz, 2H), 6.63 (d, J = 8.4 Hz, 2H), 4.20 (s, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 150.66, 133.82, 120.33, 114.48, 99.90.

According to **GP**, catalyst (30 mg), 1-(4-nitrophenyl)ethan-1-one **1u** (84 mg, 0.51 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2u** (65 mg, 0.48 mmol, 94%) was obtained as a solid.

 ^1H NMR (300 MHz, CDCl_3) δ 7.91–7.62 (m, 2H), 6.75–6.45 (m, 2H), 4.10 (s, 2H), 2.48 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 196.68, 151.43, 130.86, 127.70, 113.75, 26.12.

According to **GP**, catalyst (30 mg), (4-nitrophenyl)(phenyl)methanone 1v (108 mg, 0.48 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product 2v (90 mg, 0.46 mmol, 95%) was obtained as a solid.

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.60–7.48 (m, 5H), 6.63 (d, *J* = 8.3 Hz, 2H), 6.19 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 193.88, 154.26, 139.54, 133.06, 131.47, 129.23, 128.63, 124.18, 113.02.

2w >99%

According to **GP**, catalyst (30 mg), 1-nitro-3-vinylbenzene **1w** (75 mg, 0.50 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2w** (60 mg, 0.50 mmol, >99%) was obtained as a liquid.

¹H NMR (300 MHz, CDCl₃) δ 7.13 (t, *J* = 7.8 Hz, 1H), 6.84 (dt, *J* = 7.6, 1.3 Hz, 1H), 6.78–6.49 (m, 3H), 5.72 (dd, *J* = 17.6, 1.0 Hz, 1H), 5.22 (dd, *J* = 10.9, 1.0 Hz, 1H), 3.54 (s, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 146.59, 138.76, 137.10, 129.51, 117.04, 114.90, 113.71, 112.84.

NH₂ **EtOOC**

2x >99%

According to **GP**, catalyst (30 mg), ethyl (E)-3-(4-nitrophenyl)acrylate **1x** (107 mg, 0.48 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2x** (92 mg, 0.48 mmol, 99%) was obtained as a liquid.

¹H NMR (300 MHz, CDCl₃) δ 7.61 (d, *J* = 15.9 Hz, 1H), 7.40–7.16 (m, 2H), 6.75–6.55 (m, 2H), 6.25 (d, *J* = 15.9 Hz, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.93 (s, 2H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.80, 148.75, 144.97, 129.90, 124.70, 114.92, 113.67, 60.23, 14.43.

2y 98%

According to **GP**, catalyst (31 mg), (*E*)-1-nitro-4-styrylbenzene **1y** (108 mg, 0.48 mmol), in MTHF/H₂O (1.5 mL/0.5 mL), H₂ (20 bar), at 40 °C for 24 h. The product **2y** (93 mg, 0.47 mmol, 98%) was obtained as a liquid.

¹H NMR (300 MHz, CDCl₃) δ 7.58–7.50 (m, 2H), 7.41 (dddd, *J* = 8.1, 4.7, 2.1, 0.7 Hz, 4H), 7.32 – 7.24 (m, 1H), 7.11 (d, *J* = 16.3 Hz, 1H), 6.99 (d, *J* = 16.3 Hz, 1H), 6.76–6.66 (m, 2H), 3.96 – 3.50 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 146.26, 138.04, 128.79, 128.74, 128.05, 127.84, 126.97, 126.19, 125.16, 115.29.

9. ¹H NMR and ¹³C NMR Spectra of Products

Original spectra for **2c**:

170915.f316.10.fid Wu Li WU-2-911 PROTON CDCl3 {C:\Bruker\TopSpin3.5pl6} 1709 16

110 100 f1 (ppm) Ó -10 Original spectra for 2d:

170915.f317.10.fid Wu Li WU-2-912 PROTON CDCl3 {C:\Bruker\TopSpin3.5pl6} 1709 17

3.59

Original spectra for 2f:

170919.f329.10.fid Li/ Wu-2-928 PROTON CDCI3 {C:\Bruker\TopSpin3.5pl6} 1709 29	6.77 6.77 6.75 6.75 6.73 6.73 6.73 6.63 6.63 6.65 6.65 6.65	3.39	1.37 1.37 1.37

Original spectra for 2g:

Original spectra for 2h:

170919.f325.10.fid	007 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~
Li/ Wu-2-924 전문문문문	<pre></pre>	2.8
PROTON CDCl3 {C:\Bruker\TopSpin3.5pl6} 1709 25		

Original spectra for 2i:

170921.f337.10.fid
Li/ Wu-2-954
PROTON CDCl3 {C:\Bruker\TopSpin3.5pl6} 1709 37

____3.42

Original spectra for 2j:

121113132010.10 Wu Li Mu 2986-19 PROTON CDCI3 {C:\Bidker\rop5plin3-5ploy1271120

110 100 f1 (ppm) 20 210 200 190 180 170 160 150 140 130 120 90 80 70 60 50 40 30 20 10 Ó -10 Original spectra for **2k**: 170919.f328.10.fid Li/ Wu-2-927 PROTON CDCI3 {C:\Bruker\TopSpin3.5pl6} 1709 28

Original spectra for **2I**: 170926.410.10.fid Wu Li WU-2-976 Au1H DMSO {C:\Bruker\TopSpin3.5pl6} 1709 10

> NH₂ NH₂ 21

Original spectra for 2m:

•			
170926.412.10.fid Wu Li WU-2-970 Au1H CDCI3 {C:\Bruker\TopSpin3.5pl6} 1709 12	688 688 688 688 688 688 653 653 653 653 653 653 653 653 653 653	408 404 3.70 3.70 3.69	1.46 1.44 1.43

f1 (ppm) Ó -10

Original spectra for 20: 170915.f319.10.fid Wu Li WU-2-914 PROTON CDCl3 {C:\Bruker\TopSpin3.5pl6} 1709 19

110 100 f1 (ppm) -10 ò

Original spectra for 2q:

170919.f327.10.fid Li/ Wu-2-926 PROTON CDCl3 {C:\Bruker\TopSpin3.5pl6} 1709 27

mmegateustein	-Williamir/Parki	tederique to the special	nolog söðstykkör	ann blandach	State of a st		41 milion 44		a subject of a subject of	نىيىتى بەرتىيىتى بەرتىيىتى بەرتىيىتى بەرتىيىتى بەرتىيىتى بەرتىيىتى بەرتىيىتى بەرتىتى بىرىكى بەرتىتى بىرىكى بەر يېرىكى بېرىكى بىرىكى	a and a second	Witcomp ¹ W		actor distriction	-	er det beste gestingen	hief yn Iwref yn Iwref yn I	ver faster nåste	unge allaft spices	ne of the Second	er altendin	jeđ u
20 210	200	190 180	170	160	150	140	130	120	110	100 f1 (ppm)	90	80	70	60	50	40	30	20	10	0	-10	

Original spectra for 2r:

Original spectra for 2s:

Li/ Wu-2-930 SARARARARARARARARARARARARARARARARARARAR	170919.f330.10.fid Li/ Wu-2-930 PROTON CDCl3 {C:\Bruker\TopSpin3.5pl6} 1709 30	66666666666666666666666666666666666666	4.69
--	--	--	------

NH₂ N S 2s

	1			
dina selang napangana sela dina dina dina dina dina dina dina din	Perpiranan antonio and Perpiranan and a frag	Y waanalahohangina pintanikatikatikatikata	n o kyrisadinydd, dogelenia o gwlada ywydd y gwynnwedigol o bygan	h in an faith ann an dh' na hAf phraif in Gan de an Aiseanna an gan than gan an Aiseanna.
20 210 200 190 180 170 160 1	150 140 130 120	110 100 90 80 f1 (ppm)	70 60 50 40	30 20 10 0 -10

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

Original spectra for 2w:

170919.f335.10.fid	©© m H 9 9 0 4 m m 9 0 4 0 9 4 0 0 1 H 0 0 0 0 0 0 4 0 8 4 4 H 0	4
Li/ Wu-2-935	222225552555555555555555555555555555555	3.5
PROTON CDCI3 {C:\Bruker\TopSpin3.5	x16} 1709 35	

Original spectra for 2y:

