Electronic Supplementary Information

Chiral Hybrid Materials Based on Pyrrolidine Builder Units to Perform Asymmetric Michael Additions with High Stereocontrol

Sebastián Llopis, Teresa García, Ángel Cantín, Alexandra Velty, Urbano Díaz*, Avelino Corma*

Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, E-46022 Valencia, Spain Tel.: +34963877800 FAX: +34963877809 E-mail: <u>udiaz@itq.upv.es; acorma@itq.upv.es</u>

<u>Index</u>

Table S1: Effect of the solvent over the enantioselective catalytic performance of HybPyrcatalyst.

Table S2. Effect of the additive addition over the enantioselective catalytic performance of HybPyr catalyst.

Table S3. HPLC data

Figure S1. ¹³C NMR spectra of pure bis-silylated precursor, PyrSil.

Figure S2. ²⁹Si NMR spectra of HybPyr after four uses.

Figure S3. ¹³C NMR spectra of HybPyr after four uses.

HPLC Data

Racemic and chiral HPLC chromatograms for Michael adducts

NMR spectra of intermediates for the preparation of HybPyr catalyst

Entry	t(days)	cat. Mol%	Solvent	TºC	Yield (%) ^a	ee (%) ^b
1	5.5	20%	95/5	rt	84	40
2	3	20%	Brine	rt	62	22
3	3	20%	H ₂ O	rt	37	20
4	3	20%	ACN	rt	28	13
5	3	20%	AcOEt	rt	21	6
6	2	10%	Toluene	rt	14	-
7	3	20%	CHCl₃	rt	34	15
8	2	20%	CPME	rt	39	18
9	3	20%	DCM	rt	35	38
10	3	20%	DMF	rt	8	Racemic
11	3	20%	DMSO	rt	9	Racemic
12	3	20%	Et ₂ O	rt	56	23
13	3	20%	THF	rt	23	5
14	2	10%	Hexane	rt	18	11 ^e
15	6	20%	MeOH	rt	96	51
16	13	20%	MeOH	0	30	46
17	2	20%	MeOH	60	54	22
18	2	10%	MeOH	rt	36	52
19	7.5	20%	EtOH	rt	67	24
20	2	20%	t-BuOH	rt	30	10
21	7.5	20%	iPrOH	rt	64	8
22	3	20%	BuOH	rt	38	22

Table S1. Effect of the solvent over the enantioselective catalytic performance of HybPyr catalyst.

Reaction conditions: β -nitrostyrene (0.2 mmol), isobutyraldehyde (2 mmol), additive (0.05 mmol), catalyst (10 or 20 mol %), solvent (1 mL), T= 25 °C. In all cases, the selectivity towards Michael adducts was > 99 %. (a) Yield and conversion were determinate by GC. (b) Determined by HPLC on the purified reaction mixture, using a chiral stationary phase (Chiralpak IC column).

Entry	t(days)	Solvent	TºC	Additive	pKa (water)	Yield (%) ^a	ee(%) ^ь
1	5.5	95/5	rt	PhCO₂H	4.2	83	38
2	7.5	EtOH	rt	PhCO₂H	4.2	60	30
3	7.5	iPrOH	rt	PhCO₂H	4.2	64	13
4	2	iPrOH	rt	TFA	-15	5	-
5	6	MeOH	rt	AcOH	4.75	87	55
6	17	MeOH	0	AcOH	4.75	33	55
7	17	MeOH	0	PhCO₂H	4.2	36	55
8	5.75	MeOH	rt	PhCO₂H	4.2	90	53
9	17	MeOH	rt	TFA	-15	-	-
10	10	MeOH	rt	HCO ₂ H	3.75	63	38
11	3.75	MeOH	rt	HBA	4.36	66	53
12	3	Toluene	4	TFA	-15	-	-

 Table S2. Effect of the additive addition over the enantioselective catalytic performance of HybPyr catalyst.

Reaction conditions: β -nitrostyrene (0.2 mmol), isobutyraldehyde (2 mmol), additive (0.05 mmol, 25 mol %), catalyst (10 mol %), solvent (1 mL), T= 25 °C. In all cases, the selectivity towards Michael adducts was > 99 %. (a) Yield and conversion were determinate by GC. (b) Determined by HPLC on the purified reaction mixture, using a chiral stationary phase (Chiralpak IC column).TFA: triflic acid, HBA: 4-heptyl-benzoic acid

Figure S1. ¹³C NMR spectrum of pure bis-silylated precursor, PyrSil.

Figure S2. ²⁹Si CP/MAS NMR spectrum of HybPyr after four uses.

Figure S3. ¹³C NMR spectrum of HybPyr after four uses.

HPLC data

High performance liquid chromatography (HPLC) was performed on an Agilent Technologies chromatograph (1220 Series), using Daicel Chiralpak IC column (4.6 x 250 mm).

Product	n-Hexane/ <i>i</i> -PrOH	Flow rate [mL/min]	λ[nm]	t _R [min]
H NO2	90:10	1.0	210	anti: 23.4, 62.3 syn: 40.1,47.9
Br O H NO ₂	90:10	1.0	210	syn: 41.9, 45.0
CH ₃ O H NO ₂	80:20	1.0	210	anti:20.3,47.8 syn: 34.4, 40.6
CF ₃ H NO ₂	90:10	1.0	210	syn: 20.3, 21.9
	80:20	1.0	210	anti:18.3,36.1 syn: 27.8,31.5
	90:10	1.0	210	anti:18.3,27.0 syn: 31.2,35.0

Table S3. HPLC data

-				
Br O H Et	90:10	0.6	210	anti: 31.9, 47.9 syn: 55.1, 57.2
CH ₃ O H Et	90:10	1.0	210	anti: 16.8,23.9 syn: 28.8,32.5
H Et	90:10	1.0	210	syn: 17.6, 18.7
OCH3 OH H Et	80:20	1.0	210	anti: 18.3, 24.4 syn: 29.1, 31.3
H NO ₂	90:10	1.0	210	anti: 16.3, 24.6 syn: 26.2, 29.7
Br NO ₂ H n-Pr	90:10	1.0	210	anti: 17.0, 25.6 syn: 27.4, 29.5
H NO ₂	80:20	1.0	210	anti: 10.7, 15.1 syn: 16.5, 18.9

H H NO ₂	95:5	0.8	254	syn: 24.2,27,4
OCH3 OH H NO2	80:20	1.0	210	anti: 15.4, 20.1 syn: 22.4,25.0

Racemic and chiral HPLC chromatograms for Michael adducts

(2R, 3R)-2-methyl-4-nitro-3-phenylbutanal (6a)

(2R, 3S)-2-methyl-4-nitro-3-(2-(trifluoromethyl)phenyl)butanal (6d)

(2R, 3S)-2-ethyl-4-nitro-3-phenylbutanal (7a)

VWD: Signal A, 210 nm Results				
P k #	Height	Retention Time	Area	Area Percent
1	78781	18,333	1905356	21,491
2	49896	27,033	1611040	18,172
3	77354	31,253	2782857	31,389
4	65996	35,027	2566458	28,948
Totals				
	272027		8865711	100,000

PK #	Height	Retention Time	Area	Area Percent
1	126047	31,973	5460584	20,665
2	85272	47,940	5569064	21,075
3	126327	55,143	7998996	30,271
4	107744	57,280	7395930	27,989
Totals				
	445390		26424574	100,000

Area Percent	Area	Retention Time	Height	VWD: Signal A, 210 nm Results Pk #
8,740	6025646	52,010	115128	1
91,260	62918495	53,960	841328	2
				Totals
100,000	68944141		956456	

(2R, 3S)-2-ethyl-4-nitro-3-(p-tolyl)butanal (7c)

VWD: Signal A, 210 nm Results				
Pk #	Height	Retention Time	Area	Area Percent
1	188981	29,130	7231724	10,115
2	1208818	32,503	64266859	89,885
Totals				
	1397799		71498583	100,000

(2R, 3S)-2-ethyl-4-nitro-3-(2-(trifluoromethyl)phenyl)butanal (7d)

VWD: Signal A, 210 nm Results Pk #	Height	Retention Time	Area	Area Percent
1	56120	18,283	1276498	8,713
2	478306	19,203	13373908	91,287
Totals				
	534426		14650406	100,000

(2R, 3S)-2-ethyl-3-(4-methoxyphenyl)-4-nitrobutanal (7e)

vwD: Signal A, 210 nm Results Pk #	Height	Retention Time	Area	Area Percent
1	185203	25,843	6509981	11,473
2	1273766	27,773	50232651	88,527
Totals				
	1458969		56742632	100,000

(R)-2-((S)-2-nitro-1-phenylethyl)pentanal (8a)

VWD: Signal A, 210 nm Results Pk #	Height	Retention Time	Area	Area Percent
1	25090	26,517	794616	9,659
2	192335	29,917	7432411	90,341
Totals				
	217425		8227027	100,000

(R)-2-((S)-1-(4-bromophenyl)-2-nitroethyl)pentanal (8b)

VWD: Signal A, 210

nm Results				
Pk #	Height	Retention Time	Area	Area Percent
2	117176	17,053	3043669	19,157
3	80453	25,673	2824952	17,780
4	131788	27,453	5132322	32,303
5	116134	29,500	4887346	30,761
Totals				
	445551		15888289	100,000

Area Percent	Area	Retention Time	Height	VWD: Signal A, 210 nm Results Pk #
9,057	4485839	26,493	128662	1
90,945	43042704	20,317	1000470	2
100,000	49528543		1195132	Totals

(R)-2-((S)-2-nitro-1-(p-tolyl)ethyl)pentanal (8c)

VWD: Signal A, 210 nm Results Pk #	Height	Retention Time	Area	Area Percent
1	114756	16,587	2457013	9,192
2	908223	18,757	24273046	90,808
Totals				
	1022979		26730059	100,000

21

(R)-2-((S)-2-nitro-1-(2-(trifluoromethyl)phenyl)ethyl)pentanal (8d)

VWD: Signal A, 254 nm Results

Pk #	Height	Retention Time	Area	Area Percent
1	47732	24,217	1551170	8,835
2	442817	27,423	16005713	91,165
Totals				
	<mark>4</mark> 90549		17556883	100,000

(R)-2-((S)-1-(4-methoxyphenyl)-2-nitroethyl)pentanal (8e)

Area Percent	Area	Retention Time	Height	P k #
11,736	8526511	22,100	253952	1
88,264	64127754	24,630	1797649	2
				Totals
100,000	72654265		2051601	

NMR spectra of intermediates for the preparation of HybPyr catalyst

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)