Supporting Information

Nanoceria-promoted low Pd-Ni Catalyst for the Synthesis of Secondary Amines from Aliphatic Alcohols and Ammonia

L. Fang,¹ Z. Yan,¹ K. Vits,² B. Southward,² and M. Pera-Titus,^{1,*}

¹ Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS – Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China

² Solvay (China) Co., Ltd., 3966 Jin Du Rd., 201108 Shanghai, China

*Corresponding author: <u>marc.pera-titus-ext@solvay.com</u>

FIGURE CAPTIONS

Figure S1. Effect of a pre-reduction step and of the presence of H_2 (5 bar) during the reaction on the catalytic performance of 0.5Pd-0.5Ni/CeO₂-HS for the amination reaction of OL with NH₃. In parentheses, carbon balance. <u>Reaction conditions</u>: OL- 6.3 mmol, NH₃/OL- 5.0-6.1, Cat- 150- 170 mg (0.074-0.079 mol%Pd and 0.18-0.20 mol%Ni with respect to OL), H₂- 0-5 bar, T- 180 °C, Time- 2 h, rpm- 600.

Figure S2. Catalytic performance of (A) yPd-xNi/CeO₂-HS_PR and (B) (xNi-yPd)/CeO₂-HS_PR (pre-reduced) catalysts based on x= 0.5 wt%Ni and y = 0.1-2.0 wt% Pd in the amination reaction of OL with NH₃. In parentheses, carbon balance. <u>Reaction conditions</u>: OL- 6.3 mmol, NH₃/OL-5.2-7.5, Cat- 130-150 mg (0.021-0.38 mol%Pd and 0.15-0.22 mol%Ni with respect to OL), H₂- 5 bar, T- 180 °C, Time- 2 h, rpm- 600.

Figure S3. Catalytic performance of $0.5Pd-0.5Ni/CeO_2_PR$ (pre-reduced) as a function of the catalyst loading in the amination reaction of OL with NH₃. In parentheses, carbon balance. <u>Reaction conditions</u>: OL- 6.3 mmol, NH₃/OL- 4.0-7.0, H₂- 5 bar, T- 180 °C, Time- 2 h, rpm- 600.

Figure S4. XRD patterns of $0.5Ni/CeO_2$ -HS, $0.5Pd/CeO_2$ -HS, $0.5Ni-0.5Pd/CeO_2$ -HS, $(0.5Pd-0.5Ni)/CeO_2$ -HS, $0.5Pd-0.5Ni/CeO_2$ -HS and the parent CeO_2-HS pre-calcined at 300 °C. For comparison, the XRD pattern of the spent $0.5Pd-0.5Ni/CeO_2$ -HS is also included.

Figure S5. STEM-EDX-SDD micrographs of Ce, O, Ni and Pd of a 0.5Pd-0.5Ni/CeO₂-HS debris.

Figure S6. FT-IR spectra of 0.5Pd/CeO₂-HS, 0.5Ni/CeO₂-HS, 0.5Ni-0.5Pd/CeO₂-HS, (0.5Pd-0.5Ni)/CeO₂-HS, 0.5Pd-0.5Ni/CeO₂-HS and the parent CeO₂-HS pre-calcined at 300 °C.

Figure S7. XPS spectra of (A) Ce3d and (B) O1s core levels of (a) $0.5Pd/CeO_2$ -HS, (b) $0.5Ni/CeO_2$ -HS, (c) $0.5Ni-0.5Pd/CeO_2$ -HS, (d) $(0.5Pd-0.5Ni)/CeO_2$ -HS and (e) $0.5Pd-0.5Ni/CeO_2$ -HS.

Figure S8. XPS spectra of Ni2p core level of (a) $0.5Ni/CeO_2$ -HS, (b) $0.5Ni-0.5Pd/CeO_2$ -HS, (c) $(0.5Pd-0.5Ni)/CeO_2$ -HS and (d) $0.5Pd-0.5Ni/CeO_2$ -HS.

Figure S9. (A) H₂-TPR profiles in the temperature range 50-300 °C for 0.5Ni/CeO₂-HS, 2Pd/CeO₂-HS, 2Pd-0.5Ni/CeO₂-HS, (2Pd-0.5Ni)/CeO₂-HS and 0.5Ni-2Pd/CeO₂-HS (unreduced); (B) H₂-TPR profiles in the temperature range 50-900 °C for the parent CeO₂-HS pre-calcined at 300 °C.

Figure S10. H₂-TPD profiles in the temperature range 50-300 °C for bimetallic (A) 2Pd- $0.5Ni/CeO_2$ -HS, (B) (2Pd- $0.5Ni/CeO_2$ -HS and (C) $0.5Ni-2Pd/CeO_2$ -HS (unreduced). The blue and orange distributions correspond to the metal and ceria phases, respectively.

Figure S11. H₂-TPD profiles for the fresh and spent 0.5Pd-0.5Ni/CeO₂-HS after 4 catalytic runs with further calcination at 400 °C for 2 h.

Figure S12. XPS spectra of the Pd3d core level of the (a) fresh and (b) spent $0.5Pd-0.5Ni/CeO_2$ -HS after 4 catalytic runs with further calcination at 400 °C for 2 h. Reaction conditions as in Figure S2.

Figure S13. TG profiles of the fresh (dashed curve) and spent (straight curve) 0.5Pd-0.5Ni/CeO₂-HS after 4 catalytic runs. Reaction conditions as in Figure S2.

TABLE CAPTIONS

Table S1. Free energies of reaction, ΔG° (J.mol⁻¹), as a function of the temperature in the liquid and gas phase for reactions R1-R13 in the main text.

Table S2. Summary of results for 2wt%Pd catalysts prepared over different supports in the direct amination reaction of OL with NH₃^a.

Table S3. Comparison of Pd-Ni/CeO₂-HS catalysts based on low Ni and Pd loading (0.5 wt% Ni, 0.1-0.5 wt%Pd) in the direct amination reaction of OL with NH_3^a .

Table S4. Comparison of Pd-Ni/Al₂O₃_PR (pre-reduced) catalysts in the direct amination reaction of OL with NH_3^a .

Table S5. Effect of the temperature on the catalytic performance of $0.5Pd-0.5Ni/CeO_2-HS_PR$ (pre-reduced) in the direct amination reaction of OL with NH_3^a .

Table S6. Effect of the catalyst loading on the catalytic performance of $0.5Pd-0.5Ni/CeO_2-HS_PR$ (pre-reduced) in the direct amination reaction of OL with NH_3^a .

Table S7. Effect of the reaction time on the catalytic performance of $0.5Pd-0.5Ni/CeO_2-HS_PR$ (pre-reduced) in the direct amination reaction of OL with NH_3^a .

Table S8. Main properties of Pd-Ni/CeO₂-HS catalysts based on 2 wt%Pd

Table S9. Results for band deconvolution of Ce3d XPS spectra measured on $0.5Pd/CeO_2$ -HS, $0.5Ni/CeO_2$ -HS, $0.5Ni/CeO_2$ -HS, $(0.5Pd-0.5Ni)/CeO_2$ -HS and $0.5Pd-0.5Ni/CeO_2$ -HS. In parentheses, standard deviation for the BE.

Table S10. Results for band deconvolution of O1s XPS spectra measured on $0.5Pd/CeO_2$ -HS, $0.5Ni/CeO_2$ -HS, $0.5Ni-0.5Pd/CeO_2$ -HS, $(0.5Pd-0.5Ni)/CeO_2$ -HS and $0.5Pd-0.5Ni/CeO_2$ -HS. In parentheses, standard deviation for the BE.

Table S11. Results for band deconvolution of Ni2p XPS spectra measured on 0.5Ni/CeO₂-HS, 0.5Ni-0.5Pd/CeO₂-HS, (0.5Pd-0.5Ni)/CeO₂-HS and 0.5Pd-0.5Ni/CeO₂-HS. For comparison, the XPS spectrum of the spent 0.5Pd-0.5Ni/CeO₂-HS is also included. In parentheses, standard deviation for the BE.

Table S12. Results for band deconvolution of Pd3d XPS spectra measured on $0.5Pd/CeO_2$ -HS, $0.5Ni/CeO_2$ -HS, $0.5Ni/CeO_2$ -HS, $(0.5Pd-0.5Ni)/CeO_2$ -HS and $0.5Pd-0.5Ni/CeO_2$ -HS. In parentheses, standard deviation for the BE.

Table S13. Reducibility and reversible H_2 storage capacity of Pd-Ni/CeO₂-HS catalysts based on 2 wt%Pd.

Table S14. Results for band deconvolution for H_2 -TPD profiles measured on the different catalytic formulation. In parentheses, standard deviation for the band temperature. For simplification, the term "CeO₂-HS" referring to the support has been removed from the catalyst label.

Figure S1. Effect of a pre-reduction step and of the presence of H_2 (5 bar) during the reaction on the catalytic performance of 0.5Pd-0.5Ni/CeO₂-HS for the amination reaction of OL with NH₃. In parentheses, carbon balance. <u>Reaction conditions</u>: OL- 6.3 mmol, NH₃/OL- 5.0-6.1, Cat- 150- 170 mg (0.074-0.079 mol%Pd and 0.18-0.20 mol%Ni with respect to OL), H₂- 0-5 bar, T- 180 °C, Time- 2 h, rpm- 600.

Figure S2. Catalytic performance of (A) yPd-xNi/CeO₂-HS_PR and (B) (xNi-yPd)/CeO₂-HS_PR (pre-reduced) catalysts based on x= 0.5 wt% Ni and y = 0.1-2.0 wt% Pd in the amination reaction of OL with NH₃. In parentheses, carbon balance. <u>Reaction conditions</u>: OL- 6.3 mmol, NH₃/OL- 5.2-7.5, Cat- 130-150 mg (0.021-0.38 mol%Pd and 0.15-0.22 mol%Ni with respect to OL), H₂- 5 bar, T- 180 °C, Time- 2 h, rpm- 600.

Figure S3. Catalytic performance of $0.5Pd-0.5Ni/CeO_2_PR$ (pre-reduced) as a function of the catalyst loading in the amination reaction of OL with NH₃. In parentheses, carbon balance. Reaction conditions: OL- 6.3 mmol, NH₃/OL- 4.0-7.0, H₂- 5 bar, T- 180 °C, Time- 2 h, rpm- 600.

Figure S4. XRD patterns of 0.5Ni/CeO₂-HS, 0.5Pd/CeO₂-HS, 0.5Ni-0.5Pd/CeO₂-HS, (0.5Pd-0.5Ni)/CeO₂-HS, 0.5Pd-0.5Ni/CeO₂-HS and the parent CeO₂-HS pre-calcined at 300 °C. For comparison, the XRD pattern of the spent 0.5Pd-0.5Ni/CeO₂-HS is also included.

Figure S5. STEM-EDX-SDD micrographs of Ce, O, Ni and Pd of a 0.5Pd-0.5Ni/CeO₂-HS debris.

Figure S6. FT-IR spectra of $0.5Pd/CeO_2$ -HS, $0.5Ni/CeO_2$ -HS, $0.5Ni-0.5Pd/CeO_2$ -HS, (0.5Pd-0.5Ni)/CeO_2-HS, $0.5Pd-0.5Ni/CeO_2$ -HS and the parent CeO_2-HS pre-calcined at 300 °C.

Figure S7. XPS spectra of (A) Ce3d and (B) O1s core levels of (a) $0.5Pd/CeO_2$ -HS, (b) $0.5Ni/CeO_2$ -HS, (c) $0.5Ni-0.5Pd/CeO_2$ -HS, (d) $(0.5Pd-0.5Ni)/CeO_2$ -HS and (e) $0.5Pd-0.5Ni/CeO_2$ -HS.

Figure S8. XPS spectra of Ni2p core level of (a) $0.5Ni/CeO_2$ -HS, (b) $0.5Ni-0.5Pd/CeO_2$ -HS, (c) $(0.5Pd-0.5Ni)/CeO_2$ -HS and (d) $0.5Pd-0.5Ni/CeO_2$ -HS.

Figure S9. (A) H₂-TPR profiles in the temperature range 50-300 °C for 0.5Ni/CeO₂-HS, 2Pd/CeO₂-HS, 2Pd-0.5Ni/CeO₂-HS, (2Pd-0.5Ni)/CeO₂-HS and 0.5Ni-2Pd/CeO₂-HS (unreduced); (B) H₂-TPR profiles in the temperature range 50-900 °C for the parent CeO₂-HS pre-calcined at 300 °C.

Figure S10. H₂-TPD profiles in the temperature range 50-300 °C for bimetallic (A) 2Pd- $0.5Ni/CeO_2$ -HS, (B) (2Pd- $0.5Ni/CeO_2$ -HS and (C) $0.5Ni-2Pd/CeO_2$ -HS (unreduced). The blue and orange distributions correspond to the metal and ceria phases, respectively.

Figure S11. H₂-TPD profiles for the fresh and spent $0.5Pd-0.5Ni/CeO_2$ -HS after 4 catalytic runs with further calcination at 400 °C for 2 h.

Figure S12. XPS spectra of the Pd3d core level of the (a) fresh and (b) spent $0.5Pd-0.5Ni/CeO_2-HS$ after 4 catalytic runs with further calcination at 400 °C for 2 h. Reaction conditions as in Figure S2.

Figure S13. TG profiles of the fresh (dashed curve) and spent (straight curve) 0.5Pd-0.5Ni/CeO₂-HS after 4 catalytic runs. Reaction conditions as in Figure S2.

	Li	quid phase			Gas phase	
	150 °C	180 °C	210 °C	150 °C	180 °C	210 °C
R1	-12125	-12027	-11919	-5664	-5802	-5968
R2	13597	6537	-562	4062	246	-6748
R3	-10110	-12211	-14287	-41968	-48896	-55558
R4	-25166	-24382	-23594	-78405	-103480	-127948
R5	-32704	-31831	-30963	-23007	-22429	-21848
R6	-15057	-12171	-9307	29999	38541	46764
R7	-13041	-12355	-11676	-19778	-19385	-18974
R8	-20578	-19804	-19044	-17007	-16503	-16006
R9	-7537	-7449	-7368	-10722	-10640	-10574
R10	-38764	-30920	-23033	27200	31081	38069
R11	-46301	-38369	-30401	41435	45342	48523
R12	-35635	-31976	-28351	45349	50953	56177
R13	-61358	-50540	-39708	38949	44157	49020

Table S1. Free energies of reaction, ΔG° (J.mol⁻¹), as a function of the temperature in the liquid and gas phase for reactions R1-R13 in the main text.

Entry	Catalyst	Ni loading	Pd loading	H ₂ pressure	OL conv.		Selectiv	ity (%)		DOA yield	TON	Carbon
Епиу	Catalyst	(mol%)	(mol%)	(bar)	(%)	OA	DOA	TOA	ON	(%)	(DOA) ^b	balance
1	2Pd/SiO ₂	-	0.45	0	16	8.0	19	4.0	6.0	3.0	8.2	90
2	2Pd/SiO ₂	-	0.45	5	2.0	47	29	2.0	0.0	0.6	1.6	100
3	$2Pd/Al_2O_3$	-	0.45	0	8.0	5.0	5.0	0.0	7.0	0.4	1.0	94
4	$2Pd/Al_2O_3$	-	0.45	5	3.0	51	39	2.0	0.0	1.3	3.7	100
5	2Pd/MgO	-	0.45	0	0.0	-	-	-	-	-	-	-
6	2Pd/MgO	-	0.45	5	6.0	27	69	4.0	0.0	3.8	11	100
7	2Pd/CeO ₂ -LS	-	0.45	0	0.0	-	-	-	-	-	-	-
8	2Pd/CeO ₂ -LS	-	0.45	5	1.0	-	-	-	-	-	-	-
9	2Pd/CeO ₂ -HS	-	0.32	0	70	8.0	52	37	1.4	36	112	100
10	2Pd/CeO ₂ -HS	-	0.32	5	78	3.0	45	10	0.0	35	110	68
11	2Pd/CeO ₂ -HS_PR ^c	-	0.30	0	52	3.5	40	46	1.5	21	69	95
12	2Pd/CeO ₂ -HS_PR ^c	-	0.28	5	72	5.3	51	13	0.0	35	132	78
13	(2Pd-0.5Ni)/CeO ₂ -HS_PR °	0.15	0.32	5	70	13	67	11	0.0	47	102	94
14	2Pd-0.5Ni/CeO ₂ -HS_PR ^c	0.18	0.38	5	67	10	60	18	0.0	40	71	92
15	0.5Ni-2Pd/CeO ₂ -HS_PR ^c	0.16	0.27	5	81	6.0	33	6.9	0.0	27	62	56
16	0.5Ni/CeO ₂ -HS PR ^d	0.21	-	5	11	-	-	-	-	-	-	90
17	$5Ni/CeO_2$ -HS_PR ^d	1.89	-	5	55	73	14	0	0.0	7.8	4.1	87
18	20Ni/Al ₂ O ₃ _PR ^e	12.4	-	5	92	42	49	1.4	0.0	45	3.6	94

Table S2. Summary of results for 2wt%Pd catalysts prepared over different supports in the direct amination reaction of OL with NH₃^a

^a Reaction conditions: OL- 6.3 mmol, NH₃/OL - 4.6-8.0, Cat - 150 mg, T- 180 °C, Time- 2 h, rpm- 600. The nanoceria was calcined at 300 °C before impregnation

^b TON_{DOA}: moles of DOA formed per mol of bulk metal (Pd, Ni or Pd+Ni) at 2 h

^c The catalysts were pre-reduced at 180 °C for 0.5 h under 70% H₂/N₂ atmosphere at 40 mL(STP)/min with a heating ramp of 4 °C/min

^d The catalysts were pre-reduced at 300 °C for 0.5 h under 70% H₂/N₂ atmosphere at 40 mL(STP)/min with a heating ramp of 4 °C/min

^e Benchmark catalyst: pre-reduction at 550 °C for 1 h under 70% H₂/N₂ atmosphere at 40 mL(STP)/min with a heating ramp of 4 °C/min

Entry Catalyst		Dra raduation	Ni loading	Pd loading	OL conv.		Selectiv	ity (%)		DOA yield	TONDOAB	Carbon
Епиу	Catalyst	Pre-reduction	(mol%)	(mol%)	(%)	OA	DOA	TOA	ON	(%)	TONDOA	balance
1	0.5Pd	Y	-	0.098	36	14	62	13	0.0	23	231	97
2	(0.1Pd-0.5Ni)	Y	0.19	0.021	27	25	43	1.2	0.0	12	56	93
3	0.1Pd-0.5Ni	Y	0.19	0.021	37	35	38	0.0	0.0	14	68	92
4	(0.5Pd-0.5Ni)	Y	0.22	0.099	59	17	72	5.2	0.0	42	130	98
5	0.5Pd-0.5Ni °	Ν	0.19	0.074	69	7.1	49	38	1.4	33	128	97
6	0.5Pd-0.5Ni ^c	Y	0.20	0.079	58	6.2	46	30	0.0	26	101	89
7	0.5Pd-0.5Ni	Ν	0.19	0.074	81	30	57	0.6	0.0	46	166	90
8	0.5Pd-0.5Ni	Y	0.19	0.074	80	20	65	2.0	0.0	52	198	89
9	0.5Ni-0.5Pd	Y	0.21	0.098	35	19	73	7.7	0.0	26	83	100
10	0.5Ni	Y	0.22	-	11	-	-	-	-	-	-	90

Table S3. Comparison of Pd-Ni/CeO₂-HS catalysts based on low Ni and Pd loading (0.5 wt% Ni, 0.1-0.5 wt%Pd) in the direct amination reaction of OL with NH_3^a

^a Reaction conditions: Oct- 6.3 mmol, NH₃/Oct- 6.0-8.0, Cat- 120-150 mg, H₂- 5 bar; T- 180 °C, Time- 2 h, rpm- 600. The nanoceria was calcined at 300 °C before impregnation

 $^{\rm b}$ TON_DOA: moles of DOA formed per mol of bulk Ni and Pd at 2 h

^c Experiments conducted with no H₂

Entry Catalyst		Cat. loading	Ni loading	Pd loading	OL conv.	Selectivity (%)				DOA yield	TON b	Carbon
Entry	Catalyst	(mg)	(mol%)	(mol%)	(%)	OA	DOA	TOA	ON	(%)	TON _{DOA} °	balance
1	(0.5Pd-0.5Ni)	120	0.16	0.073	1.2	28	2.7	0.0	62	0.03	0.2	92
2	0.5Pd-0.5Ni	140	0.19	0.086	6.3	56	42	3.0	0.0	2.5	17	120
3	0.5Ni	150	0.20	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-
4	5Ni	130	1.76	-	23	89	9.6	0.0	0.0	0.4	0.2	88

Table S4. Comparison of Pd-Ni/Al₂O₃_PR (pre-reduced) catalysts in the direct amination reaction of OL with NH₃^a

^a Reaction conditions: OL- 6.3 mmol, NH₃/Oct- 6.0-8.0, Cat- 120-150 mg, H₂- 5 bar; T- 180 °C, Time- 2 h, rpm- 600.

 $^{\rm b}$ TON_DOA: moles of DOA formed per mol of bulk Ni and Pd at 2 h

Table S5. Effect of the temperature on the catalytic performance of $0.5Pd-0.5Ni/CeO_2$ -HS_PR (pre-reduced) in the direct amination reaction of OL with NH_3^a

Entry	Т	Cat. loading	Ni loading	Pd loading	OL conv.		Selectiv	ity (%)		DOA yield	TON	Carbon
Ениу	(°C)	(mg)	(mol%)	(mol%)	(%)	OA	DOA	TOA	ON	(%)	TONDOA	balance (%)
1	120	150	0.19	0.074	<1.0	-	-	-	-	-	-	-
2	150	140	0.17	0.069	24	56	44	1.0	0.0	11	13	101
3	180	150	0.19	0.074	80	20	65	2.0	0.0	52	198	89
4	210	170	0.21	0.084	100	5.6	19	7.2	0.0	0.0	65	32

^a Reaction conditions: Oct- 6.3 mmol, $NH_3/-$ 4.0-5.8, Cat- 140-170 mg, H_2 - 5 bar; Time- 2 h, rpm- 600. The nanoceria was calcined at 300 °C before impregnation

 $^{\rm b}$ TON_DOA: moles of DOA formed per mol of bulk Ni and Pd at 2 h

Table S6. Effect of the catalyst loading on the catalytic performance of $0.5Pd-0.5Ni/CeO_2$ -HS_PR (pre-reduced) in the direct amination reaction of OL with NH_3^a

Entry	Cat. loading	Ni loading	Pd loading	OL conv.		Selectiv	ity (%)		DOA yield	TON	Carbon
Епиу	(mg)	(mol%)	(mol%)	(%)	OA	DOA	TOA	ON	(%)	TONDOA	balance (%)
1	80	0.10	0.039	47	29	74	5.5	0.0	35	250	104
2	150	0.19	0.074	80	20	65	2.0	0.0	52	198	89
3	170	0.21	0.084	91	16	79	5.3	0.0	72	244	100
4	350	0.44	0.17	99	13	79	7.4	0.0	79	130	99

^a Reaction conditions: OL- 6.3 mmol, NH₃/Oct- 4.0-7.0, H₂- 5 bar; T- 180 °C, Time- 2 h, rpm- 600. The nanoceria was calcined at 300 °C before impregnation

 $^{\rm b}$ TON_{DOA}: moles of DOA formed per mol of bulk Ni and Pd at 2 h

Table S7. Effect of the reaction time on the catalytic performance of $0.5Pd-0.5Ni/CeO_2$ -HS_PR (pre-reduced) in the direct amination reaction of OL with NH_3^a

Entry	Time	Cat. loading	Ni loading	Pd loading	OL conv.		Selectiv	ity (%)		DOA yield	TONDOL	Carbon
Liiti y	(h)	(mg)	(mol%)	(mol%)	(%)	OA	DOA	TOA	ON	(%)	TONDOA	balance (%)
1	0.5	170	0.21	0.084	30	37	66	1.6	0.0	20	68	101
2	1	160	0.20	0.079	44	29	63	1.8	0.0	28	101	97
3	2	170	0.21	0.084	91	16	79	5.3	0.0	52	244	101
4	4	180	0.22	0.089	97	13	80	7.3	0.0	78	248	100
5	6	160	0.20	0.072	100	13	69	7.2	0.0	69	248	89

^a Reaction conditions: OL- 6.3 mmol, NH₃/OL- 4.0-5.0, Cat- 160-180 mg, H₂- 5 bar; T- 180 °C, rpm- 600. The nanoceria was calcined at 300 °C before impregnation

 $^{\rm b}$ TON_DOA: moles of DOA formed per mol of bulk Ni and Pd at 2 h

Table S8. Main properties of Pd-Ni/CeO ₂ -HS	catalysts based on 2 wt%Pd
---	----------------------------

		CoO montiala	Text	ural prope	rties ^c	Com	position (b	oulk) ^d	Metal dispersion ^e		
Entry	Catalyst	size (nm) ^b	S _{BET} (m²/g)	$\begin{array}{c} V_{g} \\ (cm^{3}/g) \end{array}$	D _p (nm)	(Ni/Ce) _b x10 ⁻³ (-)	(Pd/Ce) _b x10 ⁻³ (-)	(Ni/Pd) _b (-)	D _M (%)	$\begin{bmatrix} \bar{d}_{p,Ni-Pd} \\ (nm) \end{bmatrix}$	
1	2Pd/CeO ₂ -HS	6.3	173	0.17	3.5	0	23	0	48 (67)	2.8 (1.7)	
2	2Pd/CeO ₂ -HS ^a	6.9	158	0.15	3.1	0	26	0	33 (-)	4.4 (-)	
3	0.5Ni-2Pd/CeO ₂ -HS	6.1	184	0.16	3.1	13	23	0.56	26 (-)	5.6 (-)	
4	(2Pd-0.5Ni)/CeO ₂ -HS	6.3	120	0.11	3.3	12	26	0.47	36 (-)	3.9 (-)	
5	2Pd-0.5Ni/CeO ₂ -HS	6.6	194	0.16	3.1	13	27	0.48	44 (-)	3.1 (-)	

^a The nanoceria was pre-calcined at 500 °C instead of 300 °C before metal impregnation

^b Measured from XRD using Scherrer equation applied to (111) reflection

^c Measured by N₂ adsorption at -196 °C

^d Measured by ICP-OES

^e Measured from the H₂-TPD profiles in the range from -80 $^{\circ}$ C to 40 $^{\circ}$ C (bands I-III) after reduction at 180 $^{\circ}$ C for 0.5 h; in parentheses, values measured by CO pulse chemisorption after reduction at 180 $^{\circ}$ C for 0.5 h. The particle sizes were measured by assuming cubooctahedral shape (see SI).

Table S9. Results for band deconvolution of Ce3d XPS spectra measured on $0.5Pd/CeO_2$ -HS, $0.5Ni/CeO_2$ -HS, $0.5Ni-0.5Pd/CeO_2$ -HS, $(0.5Pd-0.5Ni)/CeO_2$ -HS and $0.5Pd-0.5Ni/CeO_2$ -HS. In parentheses, standard deviation for the BE.

Entry	Catalyst		v_0	v	v'	v''	v'''	u_0	и	u'	<i>u</i> ''	u '''
1	CeO ₂ -HS	BE (eV	7) 880.9 (0.7)	882.5 (0.8)	884.6 (1.7) 888.9 (1.7)	898.5 (0.8)	896.8 (0.6)	900.9 (0.6)	902.7 (1.5)	907.5 (1.8)	916.7 (1.0)
		%	2.0%	13%	15%	12%	18%	2.0%	7.9%	8.5%	9.1%	14%
2	0.5Pd/CeO ₂ -HS	BE (eV	7) 880.8 (0.7)	882.4 (0.8)	884.4 (1.6) 888.9 (1.6)	898.5 (0.8)	896.6 (0.6)) 900.9 (0.6)	902.4 (1.4)	907.3 (1.9)	916.6 (1.0)
		%	2.1%	14%	13%	13%	18%	2.1%	8.0%	6.5%	9.2%	14%
3	0.5Ni/CeO ₂ -HS	BE (eV	7) 880.9 (0.7)	882.6 (0.8)	884.4 (1.6) 888.9 (1.7)	898.5 (0.8)	896.8 (0.6)) 900.9 (0.6)	902.4 (1.3)	907.5 (2.0)	916.6 (1.0)
		%	2.1%	13%	13%	13%	18%	2.1%	8.0%	6.7%	9.4%	14%
4	0.5Ni-0.5Pd/CeO ₂ -HS	BE (eV	7) 880.4 (0.7)	882.2 (0.8)	884.4 (1.6) 888.7 (1.6)	898.3 (0.8)	896.6 (0.6)) 900.8 (0.6)	902.3 (1.3)	907.4 (2.0)	916.6 (1.0)
		%	2.1%	15%	13%	12%	18%	2.1%	8.0%	6.6%	9.3%	14%
5	(0.5Pd-0.5Ni)/CeO ₂ -HS	BE (eV	7) 880.7 (0.7)	882.5 (0.7)	884.4 (1.7) 888.9 (1.6)	898.5 (0.8)	896.8 (0.6)) 900.9 (0.6)	902.4 (1.3)	907.2 (1.9)	916.5 (0.9)
		%	2.2%	13%	14%	13%	18%	2.2%	7.5%	6.8%	9.7%	14%
6	0.5Pd-0.5Ni/CeO ₂ -HS	BE (eV	7) 880.7 (0.7)	882.5 (0.7)	884.4 (1.7) 888.9 (1.6)	898.4 (0.8)	896.7 (0.7)) 900.8 (0.6)	902.3 (1.3)	907.4 (2.0)	916.6 (1.0)
		%	2.2%	13%	13%	13%	19%	2.2%	7.5%	6.8%	9.6%	14%
7	0.5Pd-0.5Ni/CeO ₂ -HS ^a	BE (eV	7) 879.8 (0.8)	881.8 (0.8)	884.0 (1.7) 888.4 (1.8)	898.2 (0.8)	896.5 (0.6)	900.6 (0.6)	902.4 (1.6)	907.1 (1.6)	916.4 (1.0)
		%	2.1%	13%	16%	12%	17%	2.1%	7.5%	9.7%	7.7%	13%

^a Spent catalyst after 4 runs was recovered , washed by ethanol for 3 times and dried, calcined at 400 °C for 2 h

Table S10. Results for band deconvolution of O1s XPS spectra measured on $0.5Pd/CeO_2$ -HS, $0.5Ni/CeO_2$ -HS, $0.5Ni-0.5Pd/CeO_2$ -HS, $(0.5Pd-0.5Ni)/CeO_2$ -HS and $0.5Pd-0.5Ni/CeO_2$ -HS. In parentheses, standard deviation for the BE

Entry	Catalyst			O1s	
Епиу	Catalyst		Band I	Band II	Band III
1	CeO ₂ -HS	BE (eV)	529.7 (0.6)	531.3 (1.2)	532.4 (0.3)
		%	65%	3.2%	32%
2	0.5Pd/CeO ₂ -HS	BE (eV)	529.4 (0.6)	531.2 (1.3)	-
		%	65%	35%	-
3	0.5Ni/CeO ₂ -HS	BE (eV)	529.8 (0.6)	-	532.0 (1.2)
		%	68%	-	32%
4	0.5Ni-0.5Pd/CeO ₂ -HS	BE (eV)	529.4 (0.5)	531.0 (1.2)	-
		%	63%	37%	-
5	(0.5Pd-0.5Ni)/CeO ₂ -	BE (eV)	529.6 (0.5)	531.1 (1.6)	-
	HS	%	56%	44%	-
6	0.5Pd-0.5Ni/CeO ₂ -HS	BE (eV)	529.6 (0.5)	531.2 (1.6)	-
		%	57%	43%	-
7	0.5Pd-0.5Ni/CeO ₂ -HS ^a	BE (eV)	529.3 (0.5)	531.0 (1.4)	-
		%	56%	44%	-

 $^{\rm a}$ Spent catalyst after 4 runs was recovered , washed by ethanol for 3 times and dried, calcined at 400 $^{\rm o}C$ for 2 h

Table S11. Results for band deconvolution of Ni2p XPS spectra measured on $0.5Ni/CeO_2$ -HS, $0.5Ni-0.5Pd/CeO_2$ -HS, $(0.5Pd-0.5Ni)/CeO_2$ -HS and $0.5Pd-0.5Ni/CeO_2$ -HS. For comparison, the XPS spectrum of the spent $0.5Pd-0.5Ni/CeO_2$ -HS is also included. In parentheses, standard deviation for the BE

Entry	Catalyst		Ni2	D _{1/2}
Enuy	Catalyst		Band I	Band II
1	0.5Ni/CeO ₂ -HS	BE (eV)	856.0 (1.7)	862.1 (2.2)
		%	53%	47%
2	0.5Ni-0.5Pd/CeO ₂ -HS	BE (eV)	855.0 (1.6)	861.4 (2.2)
		%	52%	48%
3	(0.5Pd-0.5Ni)/CeO ₂ -HS	BE (eV)	855.4 (1.7)	862.1 (2.2)
		%	52%	48%
4	0.5Pd-0.5Ni/CeO ₂ -HS	BE (eV)	855.4 (1.7)	862.1 (2.2)
		%	52%	48%
5	0.5Pd-0.5Ni/CeO ₂ -HS ^a	BE (eV)	855.2 (2.5)	862.1 (2.2)
		%	65%	35%

 $^{\rm a}$ Spent catalyst after 4 runs was recovered , washed by ethanol for 3 times and dried, calcined at 400 °C for 2 h

Table S12. Results for band deconvolution of Pd3d XPS spectra measured on $0.5Pd/CeO_2$ -HS, $0.5Ni/CeO_2$ -HS, $0.5Ni-0.5Pd/CeO_2$ -HS, $(0.5Pd-0.5Ni)/CeO_2$ -HS and $0.5Pd-0.5Ni/CeO_2$ -HS. In parentheses, standard deviation for the BE

				Pd3	d _{5/2}		Pd3d _{3/2}				
Entry	Catalyst		Band I	Band II	Band III	Band IV	Band V	Band VI	Band VII	Band VIII	
			(Pd^{2+})	(Pd^{2+})	(Pd^{4+})	(Pd^{4+})	(Pd^0)	(Pd^{2+})	(Pd^{4+})	(Pd^{4+})	
1	0.5Pd/CeO ₂ -HS	BE (eV)	-	336.6 (0.6)	337.9 (0.4)	338.8 (0.3)	-	342.0 (0.6)	343.1 (0.6)	344.1 (0.5)	
		%	-	8.0%	48%	4.5%	-	6.0%	30%	3.3%	
2	0.5Ni-0.5Pd/CeO ₂ -HS	BE (eV)	-	337.3 (0.6)	337.8 (0.5)	338.9 (0.4)	-	342.4 (0.3)	343.2 (0.4)	344.1 (0.2)	
		%	-	7.1%	49%	6.1%	-	6.7%	28%	3.1%	
3	(0.5Pd-0.5Ni)/CeO ₂ -HS	BE (eV)	-	336.7 (0.5)	338.0 (0.5)	339.2 (0.3)	-	342.0 (0.2)	343.2 (0.6)	344.4 (0.5)	
		%	-	5.2%	54%	3.3%	-	2.6%	32%	2.6%	
4	0.5Pd-0.5Ni/CeO ₂ -HS	BE (eV)	-	336.9 (0.4)	338.0 (0.5)	339.0 (0.4)	-	342.0 (0.5)	343.9 (0.6)	343.8 (0.4)	
		%	-	24%	38%	2.3%	-	9.1%	20%	6.1%	
5	0.5Pd-0.5Ni/CeO ₂ -HS ^a	BE (eV)	336.3 (0.3)	337.1 (0.4)	337.9 (0.4)	-	341.6 (0.4)	342.6 (0.3)	343.1 (0.5)	-	
		%	37%	40%	23%	-	42%	29%	29%	-	

^a Spent catalyst after 4 runs was recovered , washed by ethanol for 3 times and dried, calcined at 400 °C for 2 h

Table S13 Reducibility a	nd reversible H ₂ storage	capacity of Pd-Ni/CeO ₂ -HS	catalysts based on 2 wt%Pd
Tuble 515. Reductoffity t		$cuputity of 1 u (10) coo_2 mc$	Cullings to Cubcu on 2 withor a

	Catalyst	Catalyst reducibility ^b			H ₂ reversibility ^c							
Entry		TPR bands (°C)	H ₂ uptake (µmol/g)	Red (%)	TPD bands (2 most intense) (°C)	H ₂ release (µmol/g)	Rev (%)	TPD bands (V-VI) (°C)	H ₂ release (µmol/g)	Rev (%)		
1	0.5Ni-2Pd/CeO ₂ -HS	122 / 131	1570	54	160 / 280	441	28	34 / 84	86	6.0		
2	(2Pd-0.5Ni)/CeO ₂ -HS	113	1230	42	155 / 279	457	37	43 / 69	55	4.5		
3	2Pd-0.5Ni/CeO ₂ -HS	99	1260	43	102 / 270	494	39	46 / 102	174	11		
4	2Pd/CeO ₂ -HS	69	1530	53	151 / 268	318	21	70 / 86	75	4.9		
5	2Pd/CeO ₂ -HS ^a	48	1000	34	142 / 279	430	43	46 / 73	44	4.4		

^a The nanoceria was pre-calcined at 500 °C instead of 300 °C before metal impregnation

^b Measured from the H₂-TPR profiles in the temperature range from 30 °C to 200 °C under H₂ flow (40 mL(STP)/min); the reducibility (red) was measured from the H₂ uptake using Eq 2

^c Measured from the H₂-TPD profiles in the temperature range from 40 °C to 400 °C after reduction at 180 °C for 30 min using a heating ramp of 10 °C.min⁻¹ except for 0.5Ni/CeO2-HS, which was reduced at 300 °C for 5 min using a heating ramp of 10 °C.min⁻¹; the H₂ reversibility (rev) was measured from the desorbed H₂ amount using Eq 3

Destaur	Geteleet		H ₂ desorption form metal				H ₂ backspillover (metal-nanoceria)					
Entry	Catalyst		Band I	Band II	Band III	Band IV	Band V	Band VI	Band VII	Band VIII	Band IX	Band X
1	0.5Ni	T (°C)	-51 (31)	-	-	28 (19)	-	103 (25)	166 (39)	286 (105)	-	450 (40)
		µmol/g	1.3	-	-	7.6	-	13	12	368	-	21
2	0.5Pd	T (°C)	-	-	4.0 (8)	20 (8)	73 (16)	128 (67)	199 (79)	284 (41)	374 (50)	-
		µmol/g	-	-	8.3	13	27	133	139	60	97	-
3	0.5Ni-0.5Pd	T (°C)	-65 (25)	-1.0 (8)	4.0 (8)	23 (18)	64 (33)	-	155 (52)	262 (45)	370 (72)	-
		µmol/g	3.5	4.4	2.7	32	55	-	128	57	84	-
4	(0.5Pd-0.5Ni)	T (°C)	-57 (18)	-4.0 (3)	-	16 (11)	40 (17)	90 (28)	168 (51)	269 (45)	376 (74)	-
		µmol/g	2.6	3.3	-	9.3	43	46	154	66	139	-
5	0.5Pd-0.5Ni	T (°C)	-50 (24)	-	3.3 (8)	31 (14)	55 (20)	134 (62)	-	249 (44)	379 (81)	-
		µmol/g	1.6	-	1.8	9.5	6.6	168	-	44	97	-
6	0.5Pd-0.5Ni ^a	T (°C)	-69 (20)	-	-	23 (18)	56 (19)	89 (28)	147 (29)	194 (43)	285 (51)	420 (88)
		µmol/g	2.3	-	-	2.5	2.8	13	12	34	52	79
7	0.5Ni-2Pd	T (°C)	-59 (14)	-6.0 (8)	3.5 (11)		34 (22)	84 (32)	160 (57)	280 (56)	372 (39)	435 (32)
		µmol/g	5.4	10	10	-	52	43	155	148	63	34
8	(2Pd-0.5Ni)	T (°C)	-55 (8)	-14 (18)	-	26 (9)	43 (9)	69 (32)	155 (60)	279 (56)	370 (39)	435 (32)
		µmol/g	4.0	12	-	24	14	41	166	142	61	33
9	2Pd-0.5Ni	T (°C)	-51 (14)	-8 (11)	-	25 (12)	46 (16)	102 (43)	184 (34)	270 (57)	383 (46)	-
		µmol/g	6.8	37	-	6.9	40	133	50	156	80	-
10	2Pd	T (°C)	-49 (13)	-2.0 (12)	-	24 (13)	38 (20)	86 (27)	151 (41)	268 (80)	-	405 (50)
		µmol/g	2.9	15	-	15	35	39	81	137	-	26
11	2Pd ^b	T (°C)	-58 (10)	-21 (12)	-	26 (11)	46 (10)	73 (24)	142 (64)	279 (69)	297 (17)	439 (110)
		µmol/g	5.4	5.8	-	13	13	21	172	126	3.8	105

Table S14. Results for band deconvolution for H_2 -TPD profiles measured on the different catalytic formulation. In parentheses, standard deviation for the band temperature. For simplification, the term "CeO₂-HS" referring to the support has been removed from the catalyst label

^a Spent catalyst after 4 runs was recovered , washed by ethanol for 3 times, dried and calcined at 400 °C for 2 h

^b The nanoceria was pre-calcined at 500 °C instead of 300 °C before metal impregnation