Supporting information

Effect of Acidity and Ruthenium Species on Catalytic Performance of Ruthenium Catalysts for Acetylene Hydrochlorination

Xiaolong Wang, Guojun Lan, Huazhang Liu, Yihan Zhu, Ying Li*

Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou ChaoWang Road 18,

310032, PR China

* Correspondence author: Professor Ying Li, E-mail: liying@zjut.edu.cn.

The AC was put in 1mol/L HCl solution and impregnation for 24 hours and then dried at 120 °C for 10 hours. The obtained product was donated as AC-HCl and was used for XPS characterization. From Figure S5, the peak at 200.2 eV is assigned to the C-Cl, which may be formed by the chemical adsorption of Cl⁻ anions produced by the HCl solution.

RuCl₃/AC-A: the active carbon support is treated with ammonia for 12 hours and then impregnated with ruthenium trichloride for 24 hours at room temperature, and then it was dried at 120 °C for 10 hours.

				-		
Catalysts	Ru loading (wt%)	Temp .(°C)	GHSV (C ₂ H ₂) (h ⁻¹)	Conv	$V_{HCI/}$ V_{C2H2}	References
RuCl ₃ -A/AC	1	180	100	99.5	1.05	Present study
1%Ru@15%TPPB/AC	1	170	180	99.7	1.15	Shang S, Zhao W, Wang Y, et al. ACS
						Catal. 2017, 7, 3510-3520
1%Ru–O/AC–O	1	180	180	93	1.15	Man B, Zhang H, Zhang J, et al. RSC
						Adv, 2017, 7,23742-23750
1%Ru ₅ Cl ₇ /AC	1	180	180	89	1.15	Man B, Zhang H, Zhang C, et al. New J.
						Chem., 2017, 41, 14675-14682
(NH ₄) ₂ RuCl ₆ /AC	1	170	180	89	1.1	Han,Y et al. Catalysts, 2017, 7, 17
Ru-Co(III)-Cu(II)/SAC	0.1	170	180	99	1.1	Zhang H, Li W, Jin Y, et al. Appl. Catal
						B: Environ, 2016, 189, 56-64.

Table S1 Information on ruthenium catalysts is available in the literatures

Figure S1 (A) The conversion of acetylene in acetylene hydrochlorination over RuCl₃-A/AC catalysts for different HCl activation time; (B) Effects of NaOH solution and saturated with VC monomer on catalyst properties. Reaction conditions: $T = 180^{\circ}C$, GHSV(C₂H₂) = 100 h⁻¹ and V_{HCl}/V_{C2H2} = 1.10.

Figure S2 (A) Nitrogen adsorption-desorption isotherms and (B) pore size distributions for RuCl₃/AC, RuCl₃/AC-used, RuCl₃-A/AC and RuCl₃-A/AC-used catalysts.

Figure S3 HRTEM images for (A): RuCl₃/AC; (B) RuCl₃/AC-used, (C) RuCl₃-A/AC and (D) RuCl₃-A/AC-used

catalysts.

Figure S5 Cl 2p XPS spectra of AC-HCl

Figure S6 (A) The conversion of acetylene in acetylene hydrochlorination over Ru-based catalysts; (B) NH₃-TPD profiles of RuCl₃/AC, RuCl₃/AC-A and RuCl₃-A/AC

Figure S7 TG and DTG curves of (A): Ru/AC; (B): Ru/AC-used catalysts under air flow.