Supplementary information

Fe(CN)₅@PILs derived N-doped porous carbon with FeC_xN_y active sites as a robust electrocatalyst for oxygen reduction reaction

Shao-hua Zhang, ^{#a} Yi-jing Gao, ^{#a} Shan Cheng, ^a Yi-long Yan, ^a Shi-Jie Zhang, ^a Gui-lin Zhuang, ^{a*} Sheng-wei Deng, ^a Zhong-zhe Wei, ^a Xing Zhong, ^a Jianguo Wang^{a*}

Structure Characterization

The morphologies of materials and elemental species were detected by High performance transmission electron microscopy (HR-TEM, Tecnai G2 F30) and scanning ekectron microscopy (SEM, Hitachi S4700). Powder X-ray diffraction (PXRD) were conducted by a panalytical X-pert pro diffractometer with Cu-K α radiation. X-ray photoelectron spectroscopy (XPS) were measured by a Kratos AXIS Ultra DLD instruments with 300 W Al Ka radiation and C 1s peak at 284.5 eV as internal standard. The surfaces area of catalysts was recorded by the measuring nitrogen adsorption isothermal in a Surface properties analyser instrument (3Flex, Micromeritics). Raman spectra were obtained by a Renishaw 2000 model confocal microscopy Raman spectrometer.

Fig. S1. (a-c), (d-f) are the SEM and TEM images of FeC_xN_y/N-PC-1, FeC_xN_y/N-PC-2 and FeC_xN_y/N-PC-4, respectively.

Fig. S2. XRD pattern of FeC_xN_y/N-PC-4 catalyst and Fe₅C₂ (JCPDS No. 51-0997), and C (JCPDS No. 01-0640).

S2

Fig. S3. High-resolution C 1s XPS spectra of FeC_xN_y/N -PC-3.

Fig. S4. High-resolution N 1s and Fe 2p XPS spectra of FeC_xN_y/N-PC-1, FeC_xN_y/N-PC-2 and FeC_xN_y/N-PC-4, respectively.

Fig. S5. Nitrogen adsorption-desorption isotherms and pore size distributions (inset) of $FeC_xN_y/N-PC-1$, $FeC_xN_y/N-PC-2$ and $FeC_xN_y/N-PC-4$.

Fig. S6. (a-b) are the SEM image and LSVs of $FeC_xN_y/N-PC$, which was prepared without template.

Fig. S7. (a-b) Polarization curve of C_xN_y and FeC_xN_y/N-PC-3, respectively. (c-d) show the Koutchy-Levich plots of catalysts at different potentials.

Fig. S8. (a) RRDE tests of C_xN_y and $FeC_xN_y/N-PC-3$ at 1600prm. (b) hydrogen peroxide yield of C_xN_y and $FeC_xN_y/N-PC-3$. (c) Pt/C in O_2 -saturated 0.1 M KOH solution with and without MeOH with scan rate 50 mV/s. (d) Nyquist plot of EIS for ORR on $FeC_xN_y/N-PC$ catalysts in 0.1M KOH solution. The inset corresponding equivalent circuit diagram of Nyquist plot of $FeC_xN_y/N-PC$. Rs, Rct and CPE are the electrolyte resistance, charge transfer resistance and constant phase element, respectively.

Fig. S9. Mass activity for these catalyst at 0.85 V vs RHE (a). Mass activity at 0.85 V vs BET for FeC_xN_y/N-PC.

Fig. S10. (a-b) and (c-d) are the SEM and TEM images of FeC_xN_y/N -PC-0.5X and FeC_xN_y/N -PC-1.5X, respectively.

Fig. S11 (a-b) and (c-d) are the SEM images and LSVs of $\rm Fe_2O_3$ and $\rm Fe_3C$, respectively.

Fig. S12. Adsorption structure of O₂/ Fe₉CN@NPC (a), O/ Fe₉CN @NPC (b), OH/ Fe₉CN @NPC (c) and OOH/ Fe₉CN @NPC (d) on the T1site.

Fig. S13. Charge difference figure of adsorption configuration of reaction species on T2 (a - c) and H1 (e - h) site of Fe₉CN @NPC.

Fig. S14. Electron localization function plots for adsorption configuration of reaction species on T2 (a − c) and H1 (e - h) site of Fe₉CN @NPC.

Fig. S15. Partial Density of state of Fe, O and N, O/ substrate (a), OH/ substrate (b) and OOH/ substrate (c) for the T2 active site.

Fig. S16. Diagram of free energy of ORR on the T2 active site under association mechanism (a) and dissociation mechanism (b). pH=0.Black, red and blue lines represent reactions at zero electrode potential (U = 0 V), the over-potential and the equilibrium potential (U = 1.23 V), respectively.

Fig. S17. Diagram of free energy of ORR on the H1 active site under association mechanism (a) and dissociation mechanism (b). pH=13.Black, red and blue lines represent reactions at zero electrode potential (U = 0 V), the over-potential and the equilibrium potential (U = 1.23 V), respectively.

Fig. S18. Diagram of free energy of ORR on the T2 active site under association mechanism (a) and dissociation mechanism (b). pH=13.Black, red and blue lines represent reactions at zero electrode potential (U = 0 V), the over-potential and the equilibrium potential (U = 1.23 V), respectively.

Table S1. Textural properties of prepared catalysts.

Catalysts	Specific surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Pore diameter (nm)	
FeC _x N _y /N-PC-1	272.5	0.53	8.23	
FeC _x N _y /N-PC-2	454.0	0.34	4.6	
FeC _x N _y /N-PC-3	719.1	1.2	6.5	
FeC _x N _y /N-PC-4	198.0	0.4	8.41	

 Table S2. XPS parameters for the catalysts. The atomic percentage content of catalysts and the percentage content of deconvoluted N-types.

catalysts	Fe	С	Ν	0	Py-N	$\operatorname{Fe-N}_{\mathrm{x}}$	Pyr-N	G-like	Py-
									N-O
FeC _x N _y /N-PC-1	0.76	80.36	11.15	7.73	34.2	9.8	9.9	29.6	16.5
FeC _x N _y /N-PC-2	1.01	81.48	10.06	7.45	32.3	11.4	11.8	28.8	15.7
FeC _x N _y /N-PC-3	0.95	83.02	9.15	6.88	24.0	10.1	13.6	31.8	20.5
FeC _x N _y /N-PC-4	0.78	89.24	3.82	6.16	20.9	9.2	7.8	48.3	13.8
FeC _x N _y /N-PC-0.5X	0.45	89.76	5.48	4.31	17.8	9.4	12.8	41.4	18.6
FeC _x N _y /N-PC-1.5X	1.21	79.95	9.48	9.36	32.2	13.0	12.2	32.2	10.4

Table S3.	Comparison o	of the ORR	performance	for FeC_xN_y	catalysts at	1600 rpm in	0.1 M KOH.
-----------	--------------	------------	-------------	----------------	--------------	-------------	------------

Catalysts	Loading mass (µg cm ⁻²)	Half-wave potential (vs RHE)	Reference	
FeC _x N _y /N-PC	160	0.84 V	This work	-
Fe-NMP	400	0.84 V	1	
Fe₃C@C	300	0.80 V	2	
MB-CFs	255	0.81 V	3	
FeN ₂ /NOMC	510	0.86 V	4	
Fe-N/HCN	100	0.85 V	5	
C-FeZIF	500	0.86 V	6	
Fe-NCA	200	0.81 V	7	

Reference

1 M. M. Hossen, K. Artyushkova, P. Atanassov, A. Serov, J. Power Sources, 2018, 375, 214-221.

2 A. Kong, Y. Zhang, Z. Chen, A. Chen, C. Li, H. Wang, Y. Shan, Carbon, 2017, **116**, 606-614.

3 C. Liu, J. Wang, J. Li, R. Luo, X. Sun, J. Shen, W. Han, L. Wang, Carbon, 2017, 114, 706-716.

4 H. Shen, E. Gracia-Espino, J. Ma, H. Tang, X. Mamat, T. Wagberg, G. Hu, S. Guo, Nano Energy, 2017, 35, 9-16.

5 Y. Wang, A. Kong, X. Chen, Q. Lin, P. Feng, ACS Catal., 2015, 5, 3887-3893.

6 Y. Deng, Y. Dong, G. Wang, K. Sun, X. Shi, L. Zheng, X. Li, S. Liao, ACS Appl. Mater. Interfaces, 2017, 9, 9699-9709.

7 Q. Lai, Q. Gao, Q. Su, Y. Liang, Y. Wang, Z. Yang, Nanoscale, 2015, 7, 14707-14714.