Supporting Information Catalytic Oxidation of Propane over Palladium Alloyed with Gold: An Assessment of the Chemical and Intermediate Species

Haval Kareem,^a Shiyao Shan,^a Zhi-Peng Wu,^a Leslie Velasco,^a Kelli Moseman,^a Casey P. O'Brien,^c Ivan c. Lee,^{c*} Dat T.Tran,^c Yazan Maswadeh,^b Lefu Yang,^d Derrick Mott,^e Jin Luo,^a Valeri Petkov,^{b*} and Chuan-Jian Zhong ^{a,*}

^{a)} Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
^{b)} Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
^{c)} U.S. Army Research Laboratory, Sensors and Electron Devices Directorate, Adelphi, MD 20783, USA
^{d)} College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
^{e)} School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan

Fig. S1. (A) Plot of Au composition in the as-synthesized PdAu nanoparticles (determined by ICP) vs. Auprecursor composition in the synthetic feeding composition. The dashed line represents a 1:1 relationship. The solid line represents the linear fitting to the NPs data (slope: 1.2, R2 = 0.974. (B) HAADF-STEM images for $Pd_{55}Au_{45}/TiO_2$ nanoparticles. (C) EDS mapping of Pd and Au in a representative sample of $Pd_{55}Au_4/TiO_2$.

Fig.S2. XPS spectra in the Pd(3d) region for $Pd_{31}Au_{69}(a)$, $Pd_{55}Au_{45}(b)$, and $Pd_{91}Au_{9}(c)$. The dashed line is for comparison of the relative shifts of the peak positions of Pd $3d_{3/2}$ and $3d_{5/2}$ (~340.2 eV and ~335 eV). There is a downshift for Pd $3d_{3/2}$ (0.5 eV (a), 0.3 eV (b), and 0.4 eV (c)). This peak position is largely characteristic of Pd(0) state, which is supported by the fact that no oxygen species (at 343 eV) were detected²⁶. The subtle shifts are a result of charge transfer from Au to Pd (*d*-electron) in the AuPd alloys.

Fig.S3 Arrhenius plot For $Pd_{55}Au_{45}/TiO_2$ for propane oxidation as fresh state (A), and O_2 treated (B), low temperature (black) and high temperature (red)

Fig. S4 Activation energy (E_a) vs. Au% (n) in the low temperature (A-C) and the high temperature (B-D) ranges for propane oxidation over Pd_{100-n}Au_n/TiO₂ (A-B) and over Pd_{100-n}Au_n/Al₂O₃ (C-D) catalysts: freshly-prepared (a), and after O₂ treatment (b).

Fig. S5. Plots of propane oxidation activities over $Au/TiO_2(A)$, and $Pd/Al_2O_3(B)$.

Figure S6. (A) In-situ DRIFTS spectra recorded during propane oxidation over Pd/Al_2O_3 (commercial) at 275 °C; The spectra in the right are zoomed views of the spectra in the 1730 to1330 cm⁻¹ region; and (B) Illustrations of in-situ DRIFTs study of intermediate species detection of propane oxidation over Pd/Al2O3. Pd (green), Au (yellow), C (gray), H (white), O (red),), and Al (pink).

Fig. S7. Plots of peak intensity (peak height) vs time for propane oxidation adsorption at 350 °C for several major bands detected, including acetate $v_{as}(CH_3CO_2^-) \sim 1560 \text{ cm}^{-1}(a, \text{ pink})$, acetone $v(CH_3)_2C=O$) ~1681 cm⁻¹(b,cyan), aliphatic ester v (CH₃C(=O)-O) ~ 1730 cm⁻¹ (c, black), bicarbonate v_{as} (HOCO₂⁻) ~1644 cm⁻¹(d, blue), formate v_{as} (HCOO⁻) ~1593 cm⁻¹(e, green), for Pd₃₁Au₆₉/Al₂O₃ (C). The data are extracted from Figure 6.

 Table S1 Vibrational mode and position of intermediate species over catalyst surface in range (1200-3000 cm⁻¹).

 Ref. 17

Species	Vibrational mode	Literature range (cm ⁻¹)	This work (cm ⁻¹)
Apototo	V _{as} (COO)	1550-1590	1560-1580
Acetate	V _s (COO)	1458-1470	1455-1460
Asstance	V (C=O)	1668-1725	1681-1683
Acetone	δ (CH)	1434-1436	N/A
Aliphatic ester	V(C=O)	1720-1753	1730-1733
Disarhanata	V _{as} (OCO)	1646-1653	1645
Bicarbonate	V _s (OCO)	1438-1451	
Enolate	V _{as} (CH2=CH-O)	1633-1655	

-	V_{s} (CH2=CH-O)	1392-1419	
	δ (CH)	1335-1338	1373-1376
	V _{as} (COO)	1586-1597	1593
Formate	V _s (OCO)		N/A
	δ (C-H)		N/A
Mathavy	§ (CU2)	1450 1475	1470, 1455,
wiethoxy	$O_{as}(CH2)$	1430-1473	1458
	V _{as} (COO)	1563-1568	
Propionate	V_s (COO), δ_{as} (CH3)	1470 1475	NT/A
Ĩ	δ (CH2)	14/0-14/5	N/A
Water	δ(HOH)	1636-1646	N/A
Contracto	V _{as} (COO)		1540-1542
	V _s (OCO)		N/A
(monodentate)	V (C-O)		N/A
СО	CO linear		N/A
	gaseous		
CO_2	gaseous		2340-2360
C ₃ H ₈ gaseous	C-H		2968-2070
Hydrocarbon	CH ₂ (ads) and CH ₃		2001 2002
fragments	(ads)		2901-2902

Table S2. Summary of values of the apparent rate constant (k₁ and k₂) obtained from fitting curves in Figure 7. The $\theta = (\frac{k_1}{k_1}) * (\exp(k_2 * t) - exp^{[10]}(-k_1 * t))$

Catalysts	Surface species	k 1	k ₂	k ₂ /k ₁
Pd_9Au_{91}	ester	8.87x10 ⁻⁵	6.07x10 ⁻⁴	6.84
	acetone	1.24 x10 ⁻⁴	6.69x10 ⁻⁴	5.39
	bicarbonate	2.22x10 ⁻⁴	9.61x10 ⁻⁴	4.32
	acetate	1.29x10 ⁻⁴	7.34x10 ⁻⁴	5.68
	formate	1.79x10 ⁻⁴	7.18x10 ⁻⁴	4.011
Pd ₅₅ Au ₄₅	ester	1.37x10 ⁻⁴	3.77x10 ⁻⁴	2.75
	acetone	1.56x10 ⁻⁴	5.59x10 ⁻⁴	3.58
	bicarbonate	1.76x10 ⁻⁴	6.54x10 ⁻⁴	3.71
	acetate	2.71x10 ⁻⁴	6.87x10 ⁻⁴	2.53

Table S3. DFT-calculated adsorption energy for molecularly adsorbed propane, O2, acetate, and C-H on Pd_nAu13-n clusters (n = 1, 6 and 9). Pd (green), Au (yellow), and O_2 (red)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Pd ₁₃	$Pd_{12}Au_1$	Pd ₇ Au ₆	Pd ₄ Au ₉	Au ₁₃

	2533	01 6681	2.741	2.631	8.1910 9.289
CH ₃ CH ₂ CH ₃					
Ads. energy (eV)	0.19	0.21	0.27	0.28	0.12
02	91894.792	2,015	122615 1,924	1925 9 2024	2,65,5,138
Ads. energy (eV)	1.53	1.46	1.19	0.82	0.41
CH ₃ COO	2.1992.166	2.156 2.170	2.147 2.120	2.133 2.139	distorted
Ads. energy (eV)	2.78	2.76	2.74	2.79	
CH ₃ CH ₂ CH ₂	2.056 2.056	2.041	2.035		2.032
Ads. energy (eV)	1.88	1.89	1.78	1.98	1.87
СН3СНСН3					
Ads. energy (eV)	1.76	1.78	1.7	1.72	1.7

Table SA Structure	hinding energy (E hinding) on	d Dd middle carbon	distance for Dd Au aluster	C
Table 54 Suuciule,	, omding energy (I	c omunig) an	la Fu-initiale carbon	uistance for Fu _n Au _{13-n} cluster	S

Composition	Cluster	E _{binding} (eV)	Pd-C distance (Å)
Pd ₁₃		2.15	2.64
Pd ₁₂ Au ₁		2.15	2.27

Pd ₇ Au ₆	\$	2.13	2.20
Pd ₄ Au ₉		2.05	2.34
Au ₁₃		1.87	3.29