Supplementary Information

Direct Catalytic Co-conversion of Cellulose and Methane to Renewable Petrochemicals

Aiguo Wang¹, Danielle Austin¹, Peng He¹, Xiaohui Mao², Hongbo Zeng², Hua Song¹*

¹Department of Chemical and Petroleum Engineering, University of Calgary 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada

²Department of Chemical and Materials Engineering, University of Alberta 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada

*Corresponding author.

Fax: +1 (403) 284-4852; Tel: +1 (403) 220-3792;

E-mail: sonh@ucalgary.ca

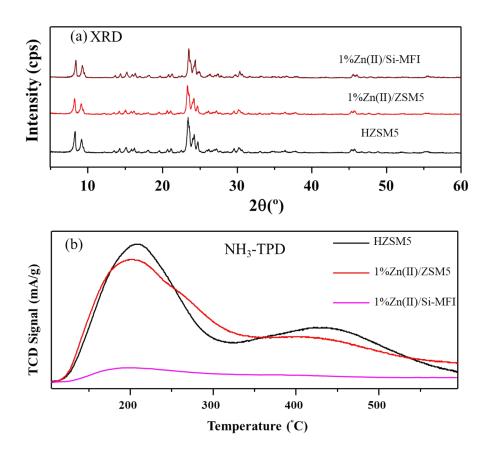
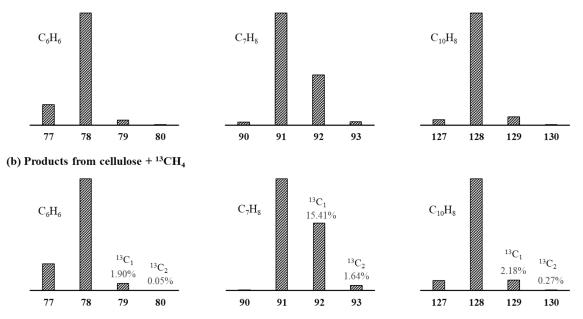



Figure S1. XRD (a) patterns and NH₃-TPD (b) profile of the catalysts HZSM5, 1%Zn(II)/ZSM5 and 1%Zn(II)/Si-MFI.

(a) Products from cellulose + CH₄

Figure S2. Mass spectra of major products (C_6H_6 , C_7H_8 , and $C_{10}H_8$): (a) with the natural abundance of ¹³C and (b) formed form ¹³CH₄ and cellulose over 3%Zn-Zn/ZSM5 with the estimated isotopic composition (mol%)

Table S1. ¹³ C liquid NMR peak area ratio with respect to CDCl ₃ of the products from cellulose
conversion under ¹³ CH ₄ and CH ₄ environments

Chemical shift/ppm	Peaks assigned	¹³ CH ₄	CH ₄	Increased by / %
129.05	Ortho positions of the alkyl substituted phenyl ring	0.107	0.067	60.3
128.34	Benzene ring /meta positions of the alkyl substituted phenyl ring	0.205	0.192	6.4
125.42	Para positions of the alkyl substituted phenyl ring	0.037	0.021	74.3
21.72	Benzylic carbon	0.060	0.046	30.7

Table S2. ¹H liquids NMR peak area ratio with respect to $CDCl_3$ of the products from the reactions between cellulose and CH_4/CD_4

The type of proton	Chemical Shifts /ppm	cellulose+CH ₄	cellulose+ CD ₄
aromatic	7.0-7.8	3.98	1.25
benzylic	2.0-2.8	0.99	0.30
Alkyl	0.6-1.4	4.53	4.51

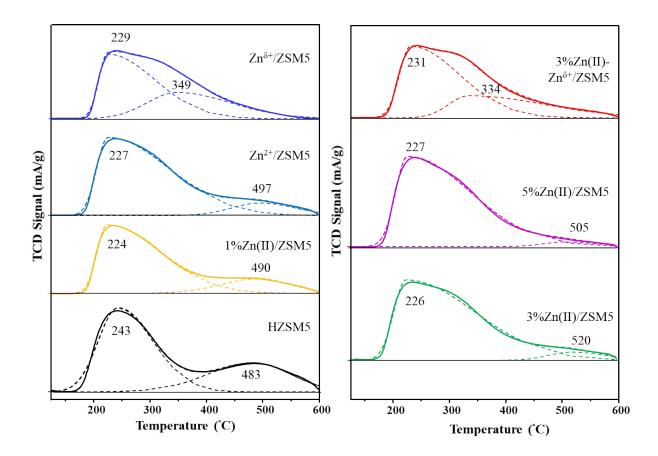
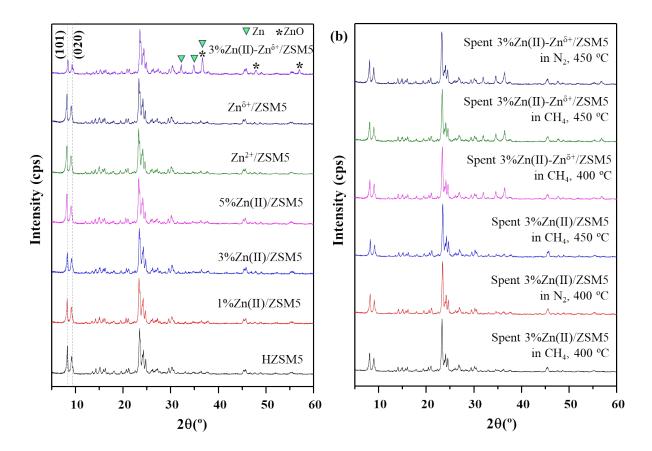



Figure S3. NH₃-TPD profiles and Bigaussian deconvoluted peaks of various fresh catalysts.

Figure S4. Powder XRD patterns of (a) various fresh catalysts, and (b) spent 3%Zn(II)/ZSM5 and 3%Zn(II)-Zn^{$\delta+$}/ZSM5 catalysts under different environments

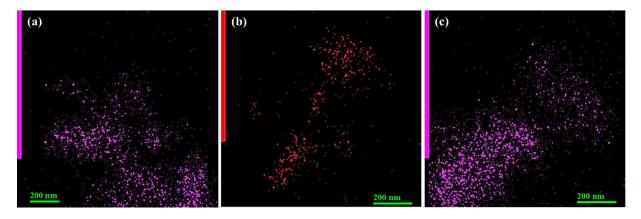


Figure S5. TEM-EDS mapping analysis of Zn species on the fresh 3%Zn(\mathbb{I})-Zn^{$\delta+/ZSM5$} catalyst (a), spent 3%Zn(\mathbb{I})-Zn^{$\delta+/ZSM5$} catalysts collected under environments of CH₄ (b) and N₂ (c).