## Supplementary information

## Efficient light-driven CO<sub>2</sub> hydrogenation on Ru/CeO<sub>2</sub> catalysts

Fengjiao Quan<sup>a</sup>, Guangming Zhan<sup>a</sup>, Chengliang Mao<sup>a</sup>, Zhihui Ai<sup>a</sup>, Falong Jia<sup>a,\*</sup>, Lizhi Zhang<sup>a</sup>, Honggang Gu<sup>b</sup> and Shiyuan Liu<sup>b</sup> <sup>a</sup> Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute

of Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China

<sup>b</sup>State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

\*Corresponding Author. E-mail: fljia@mail.ccnu.edu.cn Tel/Fax: (86)-27-67867953



Fig. S1 Photo images of the flow cell from the top view (a) and side view (b)

As for the loading of catalyst powder, quartz wool was used to block one side of the cuboid cavity, and catalyst powder was then added inside. After that, another side of the cuboid cavity was also blocked with quartz wool. The flow cell was then gently knocked until the catalyst powder vibrated to a uniform spreading.



Fig. S2 The distribution of diameters of Ru nanoparticles and the calculation of average size.



Fig. S3 EDS spectrum of Ru/CeO<sub>2</sub> sample.



**Fig. S4** XPS analysis of Ru species of  $Ru/CeO_2$  samples before and after  $H_2$  reduction. The peaks at 284.8 eV are attributed to C 1s species arising from adventitious hydrocarbons.



**Fig. S5** H<sub>2</sub>-TPR profiles of Ru/CeO<sub>2</sub> catalysts after hydrogen pretreatment at 150 °C for 1 h.



Fig. S6 The relationship between illumination power and the resulted temperatures on the catalyst.



Fig. S7  $CO_2$  conversion over Ru/CeO<sub>2</sub> catalyst under "illumination" or "heating" model by the use of another reaction gas mixture (1%  $CO_2$ , 5% H<sub>2</sub>, and 94% Ar in volume).



Fig. S8 Typical GC spectra of the feed gas and output gas obtained over  $Ru/CeO_2$  catalyst under illumination only (1.1 W cm<sup>-2</sup>).



**Fig. S9** FTIR spectra recorded at 160 °C over the CeO<sub>2</sub> catalyst after injection of 0.1 ml pure CO<sub>2</sub> gas into the cell filled with Ar. The IR peaks at 2340  $\sim$  2360 cm<sup>-1</sup> are assigned to the signals from the gas-phase CO<sub>2</sub>. And other peaks (peak locations are listed on the top of peaks) correspond to the adsorbed CO<sub>2</sub> species on the surface of CeO<sub>2</sub>.



Fig. S10 Activation energies of hydrogen splitting on the surface of  $CeO_2$  (a) and Ru (b)

The calculated results in Fig. S9 show that the hydrogen splitting on the surface of cerium oxide needs to overcome energy barrier of 2.27 eV, which is much higher than that on the surface of ruthenium (0.32 eV). This sharp contrast indicates that hydrogen molecules tend to be dissociated on ruthenium. Therefore, the ruthenium component of Ru/CeO<sub>2</sub> catalyst is responsible for hydrogen splitting in CO<sub>2</sub> hydrogenation process.



Fig. S11 CO<sub>2</sub> conversion over Ru/Al<sub>2</sub>O<sub>3</sub> catalyst under "illumination" or "heating" model. In the synthesis procedure of Ru/Al<sub>2</sub>O<sub>3</sub> catalyst, the loading of Ru nanocrystals was same as that of Ru/CeO<sub>2</sub> while commercial Al<sub>2</sub>O<sub>3</sub> nanoparticles (Alfa Aesar, ~20 nm) were used as support material.