Spectroscopic Analysis of Proton Exchange during the Photocatalytic Decomposition of Aqueous Acetic Acid: An Isotopic Study on Product Distribution and Reaction Rate

*Saher Hamid^a, Ralf Dillert^{a,b}, Jenny Schneider^{a,b}, and *Detlef W. Bahnemann^{a,c}

(a) Institut für Technische Chemie, Leibniz Universität Hannover, Callinstr.3, D-30167 Hannover, Germany.

(b) Laboratory for Nano and Quantum Engineering, Schneiderberg 39, D-30167 Hannover, Germany.

(c) Laboratory "Photoactive Nanocomposite Materials", Saint-Petersburg State University, Ulyanovskaya str. 1, Peterhof, Saint-Petersburg, 198504 Russia.

*Corresponding authors: hamid@iftc.uni-hannover.de, bahnemann@iftc.uni-hannover.de

SI-1. Material Characterization

SI-1.1 XPS Spectrum

X-ray photoelectron spectroscopy (XPS) measurements were conducted in a PHI Versaprobe II Scanning ESCA Microprobe (Physical Electronics) equipped with a monochromatized Al K α X-ray source (100 W) and an Ar ion gun. Data was evaluated with CasaXPS software.

Figure S1. XPS spectrum recorded for Pt/TiO₂ prepared by an impregnation method.

XPS spectrum recorded for the Pt/TiO₂ particles exhibited a doublet signal at binding energy 4f 7/2 = 70.1 eV and 5/2 = 73.2 eV corresponding to the metallic Pt (*i.e.*, Pt⁰) (Figure S1). This means that Pt NPs exist on the surface of TiO₂ in their Pt⁰ oxidation state¹.

SI-1.2 TEM Micrographs

The TEM micrographs were taken by Transmission electron microscopy, model: Tecnai G2 F20 TMP (FEI) with acceleration voltage 200 kV.

Figure S2. TEM images of Pt/TiO₂ prepared by an impregnation method.

Figure S2 depicts the TEM micrographs obtained for Pt/TiO_2 photocatalyst. Here, brighter spherical structures represent the TiO₂ particles whereas darker spots correspond to the Pt nanoparticles (NPs) deposited on the surface of TiO₂. The particle size for TiO₂ was found to be 15 - 25 nm, while Pt NPs were observed in between 15 - 20 nm. It can also be seen in the TEM images, that the dispersion of Pt NPs is very uniform over the whole TiO₂ matrix (Figure S2). In high-resolution TEM micrographs, the crystal lattice is also quite visible for both Pt NPs and TiO₂ particles. Also, the interface between Pt NPs and TiO₂ particles is very obvious (marked with red circles) in the high-resolution TEM images.

SI-2. Photocatalytic Set-up

Figure S3: Schematic illustration of Photocatalytic-Set up.

SI-3. pH Adjustments of Suspension

The same Hg pH electrode was used for the adjustment of pH and pD for both water and deuterated solutions, according to the Gross-Butler-Purlee-theory expressed by the following relation (Eq. S1).² The pH value of the suspension was found to play an important role in the overall reaction mechanism. So, pH 2 was found to be the best in a series of experiments for the determination of acetic acid reaction mechanism.

pD = pH + 0.44

Eq. S1

Figure S4. ¹H NMR spectra for reaction system (ii) CD₃COOD-H₂O, employing 1 wt% Pt TiO₂, photocatalyst concentration = 0.5 g L^{-1} , acetic acid concentration = 0.5 M, before illumination.

Figure S5. ¹H NMR spectra for reaction system (v) CH₃COOH-D₂O, employing 1 wt% Pt TiO₂, photocatalyst concentration = 0.5 g L^{-1} , acetic acid concentration = 0.5 M, before illumination (a) Full spectrum, (b) Zoom image representing methyl group.

Figure S6. ¹H NMR spectra for reaction system (vii) $CD_3COOD-H_2O$, employing bare TiO₂, photocatalyst concentration = 0.5 g L⁻¹, acetic acid concentration = 0.5 M, after 15 h illumination.

It can be seen in Figure S6 that NMR spectrum depicted only a peak corresponding to the H_2O signal. No other peak can be seen in the spectrum recorded from NMR spectroscopy for reaction system (vii) TiO₂-CD₃COOD-H₂O.

Figure S7. ¹H NMR spectra for reaction system (viii) CH₃COOH-D₂O, employing bare TiO₂, photocatalyst concentration = 0.5 g L^{-1} , acetic acid concentration = 0.5 M, after 15 h illumination.

Figure S7 demonstrates the NMR spectrum obtained for reaction system (viii) TiO_2 -CH₃COOH-D₂O. Here, a peak corresponding to the methyl (CH₃) group of acetic acid at the chemical shift 2 p.p.m is obvious. Other than this, a peak related to water (H₂O) signals can also be seen at about chemical shift 5 p.p.m. This peak might come from the residual protons of D₂O.

SI-5. Xenon Lamp Spectrum

Figure S8. Absorption spectrum of suspended TiO_2 particles in water and irradiance of 30 mWcm⁻² Xenon lamp in the range of 295-450 nm.

References

1. Hamid, S.; Dillert, R.; Bahnemann, D. W. Photocatalytic Reforming of Aqueous Acetic Acid into Molecular Hydrogen and Hydrocarbons over Cocatalyst-Loaded TiO₂: Shifting the Product Distribution. *J. Phys. Chem. C* **2018**.

2. Purlee, E. L. On the solvent isotope effect of deuterium in aqueous acid solutions. J. Am. Chem. Soc. 1959, 81, 263-272.