Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Rare-earth element doping promoted toluene low-temperature combustion over mesostructured CuMCeO_x (M = Y, Eu, Ho, and Sm) catalysts: The indispensable role of *in-situ* generated oxygen vacancy

Zeyu Jiang¹, Changwei Chen¹, Mudi Ma¹, Zheng Guo¹, Yanke Yu¹, Chi He^{1,2,*}

¹Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P.R. China ²National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of

Chinese Academy of Sciences, Beijing 101408, P.R. China

*To whom correspondence should be addressed:

Tel./Fax: +86 29 82663857

E-mail: chi_he@xjtu.edu.cn (C. He)

Contents

Text S1 Catalyst characterizations.

Text S2 Catalytic activity.

Text S3 In-situ DRIFTS study.

Fig. S1 (A) N₂ adsorption-desorption isotherms and (B) pore size distribution of all samples.

Fig. S2 O_2 -TPD profiles of (a) CuCeO_x, (b) CuSmCeO_x, (c) CuEuCeO_x, (d) CuHoCeO_x, and (e) CuYCeO_x.

Fig. S3 Atomistic computer simulation of the optimistic structure for reactants adsorbed over $CuHoCeO_x$ catalyst (green, red, faint yellow, bronzing, gray and white spheres represent Ho, O, Ce, C and H atoms, respectively).

Table S1 Summary of some active catalysts for toluene oxidation reported in the literature.

Catalyst characterizations

XRD measurements were performed using a powder diffractrometer (PANalytical, Netherlands) with Cu-Ka radiation. The tube voltage was 40 kV, and the current was 40 mA. XRD diffraction patterns were obtained in the 20 range of 20-80° (scanning rate of 4° /min).

 N_2 sorption isotherms were measured at 77 K on a Builder SSA-6000 apparatus. Prior to the measurements, the samples were evacuated for 4 h under vacuum at 473 K. The total pore volume was estimated from the amount of nitrogen adsorbed at a relative pressure (*P*/*P*₀) of *ca*. 0.99. The specific surface area was calculated using the Brunauer-Emmett-Teller (BET) method, and the pore size distribution was derived from the adsorption branch of the N₂ isotherm using the Barrett-Joyner-Halenda (BJH) method.

Field emission scanning electron microscopy (FE-SEM) images were recorded on a JEOL 7800F (Japan) microscope. High resolution transmission electron microscopy (HR-TEM) and high-angle annular dark-field imaging in scanning transmission electron microscopy (HAADF-STEM) images were collected on a G2F30 microscope (FEI, America) operating at an acceleration voltage of 300 kV.

X-ray photoelectron spectroscopy (XPS) experiments were carried out on an AXIS ULtrabld instrument (Kratos, UK) with Mg-K α radiation ($h\nu$ = 1253.6 eV). The X-ray anode was run at 250 W, and the high voltage was maintained at 14.0 kV with a detection angle at 54°. The pass energy was fixed at 93.90 eV to ensure sufficient resolution and sensitivity. The base pressure of the analyzer chamber was approximately 5 × 10⁻⁸ Pa. The entire spectra (0 to 1100 eV) and narrow spectra of all elements were both recorded with extremely high resolution by using a RBD 147 interface (RBD Enterprises, USA) through the XPS Peak4.1 software. Binding energies were calibrated using the containment carbon (C 1s = 284.6 eV).

H₂-TPR experiments were performed on a PCA-1200 (Builder, China) equipped with a TCD, using 50 mg of the catalyst samples, which were pretreated at 200 °C (10 °C/min) for 2 h under N₂ at a flow rate of 30 mL/min. Then the samples were reduced from room temperature to 250 °C at 10 °C/min under a mixture of 5 vol.% H₂/Ar at a flow rate of 30 mL/min. Hydrogen consumption was measured using a thermal conductivity detector (TCD). The initial H₂ consumption rate (mmol/g) of prepared samples is calculated based on the fitting peak area of H₂ consumption from H₂-TPR profiles, as follows:

$$H_{2} \text{ consumption rate } = \frac{S_{\text{cat}} \times n_{\text{CuO}} \times 1000}{S_{\text{cat}} \times m_{\text{cat}}}$$
(S1)

where S_{cat} is the fitting peak area of H₂ consumption for prepared catalysts; S_{CuO} represents the fitting peak area of H₂ consumption for CuO standard sample; n_{CuO} is the amount of CuO standard sample (mol); m_{cat} represent the weight of catalyst (g).

Temperature programmed desorption of O_2 (O_2 -TPD) was performed on a PCA-1200 equipped with a TCD. Typically, 0.1 g of the catalyst was pre-treated in a pure N_2 flow (40 mL/min) at 400 °C for 1 h and then cooled to room temperature (25 °C) prior to adsorption of O_2 for 2 h. After being saturated with O_2 , the catalysts were flushed with pure N_2 flow (40 mL/min) for 1 h at room temperature. The desorption profile of O_2 -TPD was recorded online at a heating rate of 10 °C/min.

Raman spectra in the range of 300-1200 cm⁻¹ were obtained on a RM2000 laser Raman spectrometer by employing excitation wavelength of 532 nm line of Ar ion laser and recorded on a LabRam spectrometer (JobinYvon Horiba). The wavelength was calibrated using Si signal at 520 cm⁻¹.

Catalytic activity

The performance of each material for toluene oxidation was investigated in a continuous-flow fixed-bed reactor consisting of a steel tube (6 mm, i.d.) at atmospheric pressure. In each test, 0.40 g of catalyst (40-60 mesh) was placed into the tube reactor. Prior to testing, the catalyst was pretreated at 200 °C with N₂ for 1 h. The toluene feed (900 ppm) was generated by using a N₂ bubbler in thermostatic bath at 30 °C and mixing with air (79% N₂ + 21% O₂). The total flow rate was kept at 200 mL·min⁻¹ (GHSV = 50,000 h⁻¹). The catalyst bed was subsequently set to the desired temperature and left to equilibrate for 30 min before online sampling was initiated. The concentrations of toluene, CO, and CO₂ were measured by an on-line gas chromatography (GC-9890B; Linghua, China) equipped with a flame ionization detector (FID) and HT-Wax column in 30 m × 0.32 mm (ID) × 0.5 µm. The conversion of toluene ($X_{toluene}$) was calculated as Eq (S2),

$$X_{\text{toluene}}(\%) = \frac{[\text{toluene}]_{\text{in}} - [\text{toluene}]_{\text{out}}}{[\text{toluene}]_{\text{in}}} \times 100\%$$
(S2)

where [toluene]_{in} and [toluene]_{out} represent the toluene concentrations in the inlet and outlet gas, respectively.

The reaction rate ($l_{toluene}$, mmol·g⁻¹·s⁻¹) was calculated as Eq (S3),

$$r_{\text{toluene}} = \frac{X_{\text{toluene}} \cdot V_{\text{toluene}}}{W_{\text{cat}}}$$
(S3)

where W_{cat} represents the catalyst weight (g) and V_{toluene} is the toluene gas flow rate (mol·s⁻¹).

When the conversion of toluene is < 15%, a dependence of the reaction rate ($r_{toluene}$) on the products of CO₂ and H₂O may be ignored and the empirical kinetic expression of the reaction rate equation of toluene oxidation can be described as Eq (S4),

$$r_{\text{toluene}} = A \exp(-\frac{E_a}{RT}) P_{\text{toluene}}^{\alpha} P_{O_2}^{\beta}$$
(S4)

Taking the natural logarithm of Eq (S4), Eq (S5) can be obtained.

$$\ln r = \ln A + \alpha \ln P_{\text{toluene}} + \beta \ln P_{\text{O}_{2}} - E_a / (RT)$$
(S5)

The components of the reactant gas feed undergo minor changes during the kinetics data testing, and the conversion of toluene is < 15%. Therefore, $\ln A$, $\alpha \ln P_{\text{toluene}}$, and $\beta \ln P_{0_2}$ can be supposed to be approximately constant, and Eq (S5) can be simplified to Eq (S6),

$$\ln r = -\frac{E_a}{RT} + C \tag{S6}$$

The activation energy (E_a) can be obtained from the slope of the resulting linear plot of ln *r* versus 1/T.

In-situ DRIFTS study

In-situ DRIFTS of toluene oxidation was performed using a Bruker Tensor 37 infrared spectrometer, equipped with a mercury cadmium telluride (MCT) detector cooled by liquid nitrogen. A Harrick reaction cell was fitted with KBr windows and connected to a purging and adsorption gas control system. The total flow rate was controlled by a mass flow meter. Prior to the catalytic oxidation of toluene, the catalyst samples were pre-treated under N₂ at 500 °C for 1 h to remove the surface impurities. In each case, a spectrum corresponding to the catalyst powder was recorded at selected reaction temperatures under an N₂ flow. This spectrum was then subtracted from the corresponding spectrum of the catalyst and reaction mixture in the cell. For the toluene oxidation experiment, the catalysts were exposed to a gas mixture consisting of 900 ppm toluene/20% O_2/N_2 at temperatures in the range of 180-240 °C. The system reached a steady state in about 20-25 min, as verified by the stabilized MS peak intensities. All spectra were collected at a resolution of 4 cm⁻¹ with 100 scans.

Fig. S1 (A) N_2 adsorption-desorption isotherms and (B) pore size distribution of all samples.

Fig. S2 O_2 -TPD profiles of (a) CuCeO_x, (b) CuSmCeO_x, (c) CuEuCeO_x, (d) CuHoCeO_x, and (e) CuYCeO_x.

Fig. S3 Atomistic computer simulation of the optimistic structure for reactants adsorbed over $CuHoCeO_x$ catalyst (green, red, faint yellow, bronzing, gray and white spheres represent Ho, O, Ce, C and H atoms, respectively).

Sample	Reaction conditions	<i>T</i> ₅₀ (°C)	<i>T</i> ₉₀ (°C)	$E_{\rm a}$ (kJ·mol ⁻¹)	Ref.
CuHoCeO _x	900 ppm of toluene, $GHSV = 50,000 h^{-1}$	206	224	92.5	This work
MnO _x	1000 ppm of toluene, $GHSV = 15,000 h^{-1}$	212	230	n.g.	S1
Mn ₃ O ₄ nanorod	1000 ppm of toluene, $GHSV = 30,000 h^{-1}$	235	242	n.g.	S2
$La_{0.6}Sr_{0.4}CoO_{3.\delta}$	1000 ppm of toluene, $GHSV = 20,000 h^{-1}$	235	240	n.g.	S3
LaMnO ₃	1000 ppm of toluene, $GHSV = 15,000 h^{-1}$	205	213	71	S4
$Mn_{0.85}Ce_{0.15}$	1000 ppm of toluene, $GHSV = 32,000 h^{-1}$	207	< 220	n.g.	S5
Meso-TiMnCeO _x	1000 ppm of toluene, $GHSV = 32,000 h^{-1}$	162	180	n.g.	S6
Hollow LaCoO ₃	1000 ppm of toluene, $GHSV = 20,000 h^{-1}$	220	237	n.g.	S7
5%LaMnO ₃ /Y ₂ O ₃ -ZrO ₂	1000 ppm of toluene, GHSV = 100 mL \cdot h ⁻¹	233	247	n.g.	S8

 Table S1 Summary of some active catalysts for toluene oxidation reported in the literature.

n.g.: Not given in the literature.

Reference

- S1 L. Wang, C. H. Zhang, H. Huang, X. B. Li, W. Zhang, M. H. Lu and M. S. Li, *Reac. Kinet. Mech. Cat.*, 2016, **118**, 605-619.
- S2 J. J. Li, L. Li, F. Wu, L. Zhang and X. M. Liu, Catal. Commun., 2013, 31, 52-56.
- S3 J. G. Deng, L. Zhang, H. X. Dai, H. He and C. T. Au, Catal. Lett., 2008, 123, 294-300.

S4 C. H. Zhang, Y.L. Guo, Y. Guo, G. Z. Lu, A. Boreave, L. Retailleau, A. Baylet and A. Giror-Fendler, *Appl. Catal. B: Environ.*, 2014, **148-149**, 490-498.

- S5 Y. N. Liao, M. L. Fu, L. M. Chen, J. L. Wu, B. C. Huang and D. Q. Ye, *Catal. Today*, 2013, **216**, 220-228.
- S6 D. Q. Yu, Y. Liu and Z. B. Wu, Catal. Commun. 2010, 10, 788-791.
- S7 Y. X. Liu, H. X. Dai, J. G. Deng, L. Zhang, Z. X. Zhao, X. W. Li, Y. Wang, S. H. Xie, H. G. Yang and G. S. Guo, *Inorg. Chem.*, 2013, **52**, 8665-8676.
- S8 A. Giroir-Fendler, M. Alves-Fortunato, M. Richard, C. Wang, J. A. Díaz, S. Gil, C. H. Zhang, F.
- Can, N. Bion and Y. L. Guo, Appl. Catal. B: Environ., 2016, 180, 29-37.