One-pot Copolymerization of Epoxides/Carbon Dioxide and Lactide by Ternary Catalyst System

Xiang Li, Chenyang Hu, Xuan Pang,* Ranlong Duan and Xuesi Chen

Supplementary Information Contents

- 1. Table S1. Polymerization data of LLA using 1a and 1b
- 2. Table S2. Copolymerization data of PO and CO₂ using 1a and 1b
- 3. Figure S1. ¹³C NMR spectra of PLLAPC
- 4. PLLA and PLLAPC end group analysis (Figures S2-11)
- 5. Figure S12. The ¹H NMR spectra of the rough copolymerization product of LLA, PO and CO_2 with different reaction time
- 6. The expansibility of monomers (Figures S13-15)
- 7. Analysis of PDLAPC and PLLAPC (Figures S16-19)
- 8. Analysis of "PO-LLA" and "LLA-CO₂-PO" linkages (Figures S20-28)
- 9. Analysis of PLLACHC (Figures S29-30)
- 10. Analysis of diblock copolymer PPC-PLLA (Figure S₃₃)
- 11. Table S3 Copolymerization data of PO, $\rm CO_2$ and LLA with different loadings of SalenCo^{II}
- 12. Table S4 Copolymerization data of PO, CO₂ and LLA by typical SalenCo complexes
- 13. Some GPC traces (Figure S₃₅₋₃₇)

Entry	Catalyst Ratio ^[b]		LLA ^[b]	PO ^[b]	H ₂ O (%) ^[c]	Time	Temp	Conversion		
	1a	ıb	PPNCl	-				(°C)	(%) ^[a]	
1 ^[e]	-	1	-	250	2500	-	2	60	33	
2 ^[e]	1	-	-	250	2500	-	24	60	0	
3 ^[e]	-	-	1	250	2500	-	2	60	0	
4 ^[e]	1	-	1	250	2500	-	2	60	6	
5 ^{[f], [g]}	-	1	1	250	2500	-	2	60	66	
6 ^{[f], [h]}	-	1	-	250	2500	0.25	2	60	68	
7	-	-	1	250	2500	0.25	2	60	5	
8	1	-	1	250	2500	0.25	2	60	4	
9 ^{[f], [i]}	-	1	1	250	2500	0.25	2	60	92	
10 ^{[f], [j]}	-	1	-	250	2500	0.5	2	60	90	
11	-	-	1	250	2500	0.5	2	60	17	
12	1	-	1	250	2500	0.5	2	60	10	
13	-	1	1	250	2500	0.5	2	60	92	
14	-	1	-	250	2500	1.5	2	60	80	
15	-	-	1	250	2500	1.5	2	60	7	
16	1	-	1	250	2500	1.5	2	60	8	
17	1	1	-	250	2500	1.5	2	60	29	
18	-	1	1	250	2500	1.5	2	60	96	

Table S1. Polymerization data of LLA using 1a and 1b.^[a]

[a]: Using 2 mL PO as solvent. [b]: Feed ratio. [c]: By adding quantified H_2O into neat PO to achieve a suitable mass fraction. [d]: Measured by ¹H NMR, no polyether signal was found in both ¹H and ¹³C NMR spectra. [e]: Using neat PO. [f] Determined by gel permeation chromatography calibrated with polystyrene, with a Waters 1515 GPC with tetrahydrofuran as the eluent (flow rate: 1 mLmin⁻¹, at 35 °C). [g] Mn = 4865, PDI = 1.15. [h] Mn = 5365, PDI = 1.16. [i] Mn = 3865, PDI = 1.26. [j] Mn = 4265, PDI = 1.32.

Entry	[1a] ^[b]	[1b] ^[b]	[PPNC1] ^[b]	[PO] ^[b]	Time	Temp	Conversion	Selectivity
					(h)	(°C)	(%) ^[c]	(%) ^[c]
1	-	1	1	7500	8	60	95	98
2	1	-	1	2500	8	60	69.5	16.2
2	1	-	1	2500	20	60	81.2	0
4	1	1	1	7500	8	60	82	86

Table S2. Copolymerization data of PO and CO_2 using 1a and 1b.^[a]

[a] The reactions were performed in 2 mL neat PO and 25 mL autoclave at 60 °C, 2 MPa, using PPNCl as cocatalyst. [b] Molar ratio. [c] Selectivity for polycarbonates over cyclic carbonate, determined by ¹H NMR spectroscopy.

Figure S1. ¹³C NMR spectra of PLLAPC. **a**: Tg 52 °C (Table 1, Entry 5), **b**: Tg 38 °C (Table S4, Entry 2).

Figure S2. MALDI-TOF Mass spectrum of PLLA, [1b]:[LLA]:[PO]=1:250:2500, 60 °C, 0.5h.

PO is ring-opened by trace amount of water first, and then initiates the following LLA ROP process, results in a PO-ended PLLA (the methine alkoxy end is supposed to be inactive due to the steric hindrance). In this process, PO is necessary as both solvent and initiator. The addition of PO or other epoxides are essential during this process. The peculiar end group is verified by MS and 'H NMR spectrum (Figures S₃). SalenCo^{III} complexes are completely inactive in toluene or tetrahydrofuran (with or without isopropanol as initiator), which are widely used as solvent in LLA polymerization. Unlike SalenCo^{III}, SalenCo^{III} is inactive in LLA polymerization unless with the aid of cocatalyst.

Figure S₃. Assigned ¹³C NMR spectra of PLLAPC and PLLA with similar end-groups (150 MHz). The analysis of both end-groups of PLLAPC are shown in Figure S₅-S₁₀.

Figure S4. The ¹H NMR spectra of PLLAPC (Table 1, entry 3) (600 MHz).

Upon the addition of D_2O , signal at 2.7 ppm disappeared due to the hydrogen exchange. This indicated that signal in 2.7 ppm belonged to an hydroxyl: the ROH end group of PLLAPC.¹

Figure S5. The normal, DEPT 45, and DEPT 135 $^{\rm 13}{\rm C}$ NMR spectra of PLLAPC (150 MHz).

Figure S6. Assigned HHCOSY NMR spectrum of PLLAPC (¹H 600 MHz, ¹³C 150 MHz). The signals of end-group are weak, and the correlation spectroscopy between 1H and 3H (1'H and 3'H) are visible only after magnification.

Figure S7. Assigned HHCOSY NMR spectrum of PLLAPC (¹H 600 MHz, ¹³C 150 MHz).

Figure S8. Assigned HSQC NMR spectrum of PLLAPC (¹H 600 MHz, ¹³C 150 MHz), a small quantity of structure "**a**" also existed.

Figure S9. Assigned gHMBCAD NMR spectrum of PLLAPC (1H 600 MHz, 13C 150 MHz).

Figure S10. Assigned gHMBCAD NMR spectrum of PLLAPC (¹H 600 MHz, ¹³C 150 MHz).

Figure S11. Assigned gHMBCAD NMR spectrum of PLLAPC (1H 600 MHz, 13C 150 MHz).

Figure S12. The ¹H NMR spectra of the rough copolymerization product of LLA, PO and CO₂ with different reaction time, [1a]:[1b]:[coCat]:[PO]:[LLA]=1:1:1:2500:500, 60 °C, 2MPa. The conversions of LA (%): 20.9 (a), 25.8 (b), 31.1 (c), 87.7 (d). The conversions of PO into chain polymer (%): - (a), 10 (b), 15 (c), 22 (d).

Figure S13. The GPC trace of PLLACHC (*M*_n=8600, PDI=1.60).

The terpolymerization was performed in 2 mL neat CHO in 25 mL autoclave at 60 °C, 2 MPa, 24h. Feed ratio: [1a]:[1b]:[PPNCl]:[LLA]:[CHO]=1:1:1:200:1000, retractive index detector (Waters 1515-2414).

Figure S14. The GPC trace of PLLASC (*M*n=3700, PDI=1.20).

The terpolymerization was performed in 2 mL neat SO in 25 mL autoclave at 60 °C, 2 MPa, 24h. Feed ratio: [1a]:[1b]:[PPNCI]:[LLA]:[SO]=1:1:0.5:100:500, retractive index detector (Waters 1515-2414).

Figure S15. Assigned 'H NMR spectrum of PLLASC (300 MHz).

Figure S16. The ¹³C NMR spectrum of PDLAPC (150 MHz).

The spectrum is similar to PLLAPC (Figure S17), and DLA showed the same activity and selectivity as LLA during the copolymerization.

Figure S17. Assigned ¹³C NMR spectrum of PLLAPC (150 MHz).

Figure S18. (a) Differential scanning calorimetry (DSC) and (b) WAXD spectra of crystallizable PLLAPC (Table 1, Entry 5)

Figure S19. The GPC trace of PLLAPC (Table 1, Entry 1), retractive index detector (Waters 1515-2414).

Figure S20. The gHMBCAD NMR spectrum of PLLAPC (1H 600 MHz, 13C 150 MHz).

Figure S21. The HSQC NMR spectrum of PLLAPC (1H 600 MHz, 13C 150 MHz).

Figure S22. The HH COSY NMR spectrum of PLLAPC (¹H 600 MHz).

Figure S23. The ¹H homonuclear decoupled ¹H NMR spectrum of PLLAPC (400 MHz).

Homonuclear decoupled ¹H NMR spectra of PLLAPC in the methyl reigon (a: 1.33 ppm; b: 1.58 ppm) and the ¹H NMR spectrum of PLLAPC (c) were showed above (in the magnified image (left), curve b was shifted 0.05 ppm for clear comparison).

The "PO-LLA" and "LLA-CO₂-PO" are discrepant with normal PLLA and PPC units and they shows special signals in ¹H, ¹³C NMR and 2-D NMR spectra. For the "PO-LLA" linkage, it is like the end group of PO-LLA in PLLAPC (Figure S2-S11). The methine and methyl of LLA in "PO-LLA" linkage show clear and individual related signals in HHCOSY. And the methine and methyl of PO in "PO-LLA" linkage also show individual signals (Figure S23). These signals are clear evidence of the existence of "PO-LLA" linkages. For the "LLA-CO₂-PO" linkage, the methine of LLA shows individual related signals with neighboring atoms in 2-D spectra (Figure S26, 27).

For PLLACHC, there are conjunctional structures of "CHO-LLA" and "LLA-CO₂-CHO", similar as "PO-LLA" and "LLA-CO₂-PO" linkages. The methyl of "CHO-LLA" linkage shows specific chemical shift in 'H NMR spectrum compared with the methyl of PLLA units, more detailed investigation are in Figure S28 and S29. By contrast, PLLASHC which derives from LLA, styrene oxide (SO) and CO₂, shows no individual and significative peak in 'H and ¹³C NMR spectra.

Figure S24. Assigned HHCOSY NMR spectrum of PLLAPC (1H 600 MHz, 13C 150 MHz).

Figure S25. Assigned HSQC NMR spectrum of PLLAPC (1H 600 MHz, 13C 150 MHz).

Figure S26. Assigned gHMBCAD NMR spectrum of PLLAPC (1H 600 MHz, 13C 150 MHz).

The signals of 6H-7C and 14H-13C are very close due to their similar microstructures.

Figure S27. Assigned COSY NMR spectrum of PLLAPC (1H 600 MHz, 13C 150 MHz).

Figure S28. Assigned gHMBCAD NMR spectrum of PLLAPC (1H 600 MHz, 13C 150 MHz).

Figure S29. Assigned gHMBCAD NMR spectrum of PLLACHC (¹H 600 MHz, ¹³C 150 MHz).

Figure S30. Assigned HSQC NMR spectrum of PLLACHC (1H 600 MHz, 13C 150 MHz).

Figure S₃₁. The *PO-LLA* and *LLA-CO₂-PO* linkages.

As there were no signals of polyether in ¹H NMR spectrum and no signals of consecutive carbonyl in ¹³C NMR spectrum, we supposed that *LLA-PO* linkages and CO_2 -*LLA* linkages did not exist.

Figure S₃₂. The signals of the new linkages ("PO-LLA" and "LLA-CO₂-PO") in ¹H NMR and ¹³C NMR spectra, and these signals were hard to be calculated precisely.

A two-step method was tried to obtain PPC-PLLA diblock copolymer. At the first step, PPC was prepared from PO and CO₂ by SalenCo^{III} and PPNCI. Then, CO₂ was released and LLA was added at the second step. Unfortunately, the PPC chain was unable to act as LLA macroinitiator with SalenCo^{III} alone. Instead of PPC-PLLA diblock copolymers, only PLLA homopolymer was obtained, and PPC degraded into cPC at the same time. PPC-PLLA diblock copolymer was successfully prepared when SalenCo^{III} was added at the second step ($M_n = 21 \text{ Kg/mol}$, PDI = 1.69). The absence of signal at 4.35 ppm in Figure S32 indicating the formation of PPC-PLLA diblock copolymer (homopolymer PLLA initiated by PO had obvious end group signal at 4.35 ppm).

Figure S33. The ¹H NMR spectrum of the diblock PPC-PLLA copolymer (300 MHz).

Figure S₃₄. The DOSY spectra of the PLLAPC (a) and the PLLACHC (b).

Diffusion-ordered NMR spectroscopy (DOSY) enabled an estimation of polymer diffusion rates. In the case of a block copolymer, a single diffusion coefficient was expected, with all blocks expected to diffuse at the same rate and the mixtures of homopolymers showed two coefficients. Therefore, as shown in Figure S₃₄, the result indicated the polymer obtained from copolymerization of monomer mixtures was a block copolymer.

Entry	Catalyst ^{[b}]		Monomer	[b]	Time (h)	Mn	PDI ^[c]
	ıa ıb PPNCl		РО	LLA	•	(Kg/mol) ^[C]		
1	1	1	1	2500	250	20	10.2	1.35
2	0.5	1	1	2500	250	20	8.8	2.95
3	2	1	1	2500	250	20	9.7	1.21

Table S3. Copolymerization data of PO, CO_2 and LLA with different loadings of SalenCo^{II.[a]}

[a]: the copolymerization was performed at 60 °C. [b]: molar ratio. [c]: Determined by gel permeation chromatography, calibrated with polystyrene.

Entry	Catalyst systems ^[b]			Monomer ^[b]	Time	[PLA]	Mn	PDI ^[c]	
	SalenCo ^{III}	SalenCo ^{II}	PPNCl	[PO]:	[LLA]:	(h)	(%)	(Kg/mol) ^[c]	
				[SalenCo ^{III}]	[SalenCo ^{III}]				
1	1 (2b)	1 (2a)	1	1000	100	24	37	6.7	1.6
2	1 (3b)	1 (3a)	1	1000	100	20	35	5.4	1.9
3	1 (1b)	2 (2a)	1	2500	250	24	36	8.9	1.5
4	1 (1b)	2 (3a)	1	2500	250	24	35	6.3	1.9
5	1 (2b)	0.5 (1a)	1	1000	100	20	40	2.4	1.8
6	1 (3b)	0.5 (1a)	1	1000	100	20	42	2.8	1.8

Table S4. Copolymerization data of PO, CO₂ and LLA by typical SalenCo complexes.^[a]

[a]: the copolymerization was performed at 60 °C. [b]: molar ratio. [c]: Determined by gel permeation chromatography, calibrated with polystyrene.

Report Method ID: 36024 Page: 1 of 2 Project Name: bio Date Printed: 2015-11-19 17:01:42 Asia/Harbin

Figure S35. GPC trace of PLLAPC. Experiment condition: [PO]:[LLA]:[1a]:[1b]:[PPNCl]=2500:300:1:1:1, 2 Mpa CO₂, 14 h, 60 °C, retractive index detector (Waters 1515-2414).

GPC Results											
	Dist Name	Mn	Mw	MP	Mz	Mz+1	Mv	Poly dispersity	MW Marker 1	MW Marker 2	
1		8607	11544	8737	14853	18151		1.341315			

Figure S36. GPC trace of PLLAPC. Experiment condition: [PO]:[LLA]:[1a]:[1b]:[PPNC1]=2500:250:1:1:1, 2 Mpa CO₂, 16 h, 60 °C, retractive index detector (Waters 1515-2414).

mpower2		De	fault Individual Repor
	SAMPLE	INFORMATIC	D N
Sample Name: Sample Type:	lix-574-160620 Broad Unknow n	Acquired By: Sample Set Name:	System
Vial:	1	Acg. Method Set:	bio
Injection #:	3	Processing Method:	chcl3160513
Injection Volume:	100.00 ul	Channel Name:	eSATIN-Ch2
Run Time:	30.0 Minutes	Proc. Chnl. Descr.:	Channel 2
Date Acquired:	2016-6-20 16:45:43 CST		
Date Processed:	2016-6-20 18:57:19 CST		

Reported by User: System	
Report Method: Default Individual Report	
Report Method ID: :39272	
Page: 1 of 2	

Project Name: bio Date Printed: 2016-6-20 18:58:40 Asia/Harbin

Figure S37. GPC trace of PLLAPC (Table 1, Entry 5), retractive index detector (Waters 1515-2414).

REFERENCES

1. Xue, M.; Kitahara, R.; Yoshimura, Y.; Mulder, F. A. A., *Biochem. Biophys. Res. Commun.* 2016, 478, 1185.