
Electronic Supplementary Information:

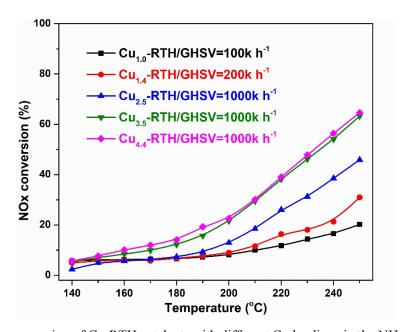
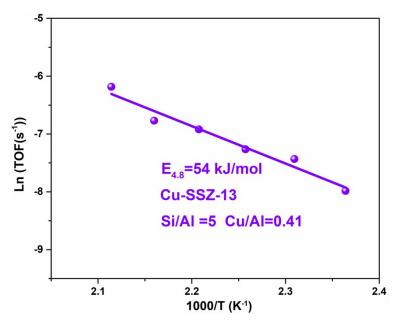
- 2 Cu-exchanged RTH-type zeolites for NH₃-selective catalytic
- 3 reduction of NOx: Cu distribution and hydrothermal stability
- 5 Yulong Shan^{a,b}, Xiaoyan Shi^{a,b}, Jinpeng Du^{a,b}, Yunbo Yu^{a,b,c}, Hong He^{a,b,c,*}
- 7 a State Key Joint Laboratory of Environment Simulation and Pollution Control,
- 8 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,
- 9 Beijing, 100085, China.

4

6

- 10 b University of Chinese Academy of Sciences, Beijing 100049, China.
- 11 ° Center for Excellence in Regional Atmospheric Environment, Institute of Urban
- 12 Environment, Chinese Academy of Sciences, Xiamen 361021, China.
- *Corresponding author at: State Key Joint Laboratory of Environment Simulation and
- 15 Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy
- of Sciences, 18 ShuangQing Road, Haidian District, Beijing, 100085, China.
- 17 Tel: +86 10 62849123; Fax: +86 10 62849123.
- 18 E-mail: <u>honghe@rcees.ac.cn</u>

Fig. S1 N₂O production of Cu-RTH catalysts with different Cu loadings in the NH₃-SCR reaction. Conditions: 500 ppm NO, 500 ppm NH₃, 5% O₂, 5% H₂O and balanced with N₂. GHSV = $100,000 \text{ h}^{-1}$.

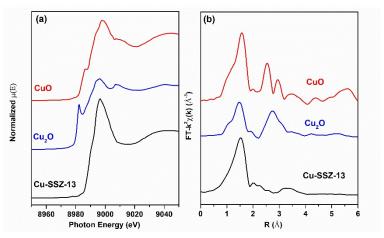

Fig. S2. NOx conversion of Cu-RTH catalysts with different Cu loadings in the NH₃-SCR reaction with varying GHSVs. conditions: 500 ppm of NO, 500 ppm of NH₃, 5% O₂, 5% H₂O and balanced with N₂.

Fig. S3. Arrhenius plots of NOx conversion over Cu-SSZ-13 catalyst with Cu loadings of 4.8 wt.%.

Fig. S4. N_2O production of hydrothermally aged Cu-RTH catalysts with different Cu loadings in the NH₃-SCR reaction. Conditions: 500 ppm of NO, 500 ppm of NH₃, 5% O_2 , 5% H₂O and balanced with N_2 . GHSV = 100,000 h^{-1} .

Fig. S5. Cu K-edge XANES spectra (a) and associated Fourier transform of the EXAFS spectra (b) of referenced materials.

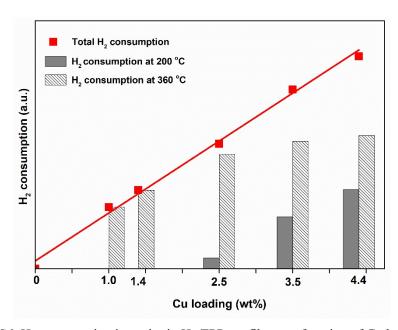
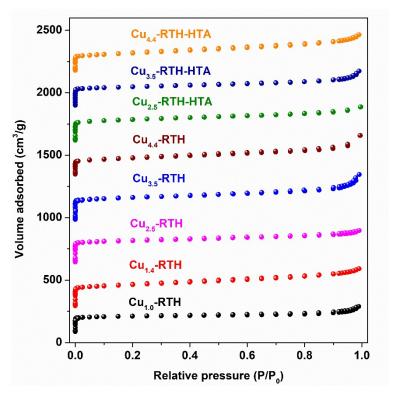



Fig. S6. H₂ consumption intensity in H₂-TPR profiles as a function of Cu loading.

 $\begin{tabular}{ll} \textbf{Fig. S7.} & N_2 & adsorption-desorption is otherms of Cu-RTH and Cu-RTH-HTA with different Cu loadings. \end{tabular}$

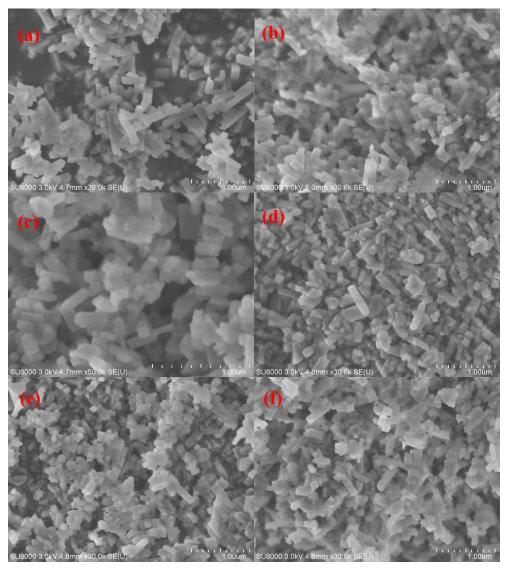


Fig. S8. SEM images of the fresh and hydrothermally aged Cu-RTH catalysts with $68 \quad different \ Cu \ loadings: (a) \ Cu_{2.5}\text{-RTH, (b)} \ Cu_{2.5}\text{-RTH-HTA, (c)} \ Cu_{3.5}\text{-RTH, (d)} \ Cu_{3.5}\text{-RTH-HTA, (e)} \\$ $Cu_{4.4}$ -RTH, (f) $Cu_{4.4}$ -RTH-HTA

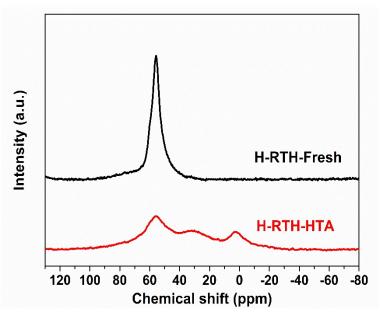


Fig. S9. ²⁷Al-NMR profiles of fresh and hydrothermally aged H-RTH zeolites.

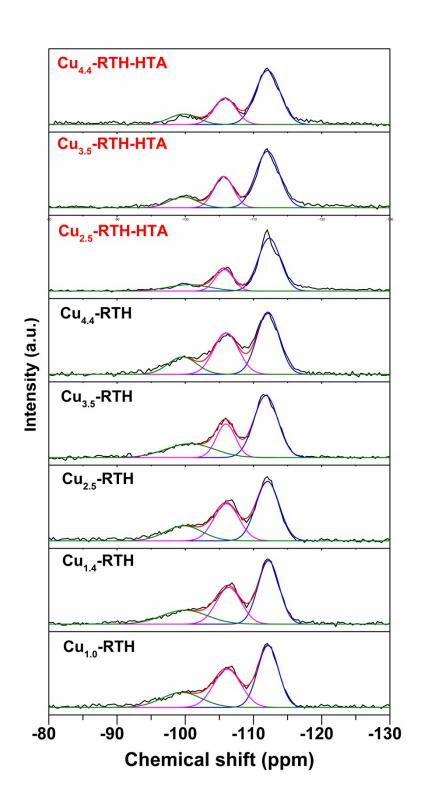


Fig. S10. Deconvolution of ²⁹Si-NMR profiles over fresh and hydrothermally aged Cu-RTH catalysts with different Cu loadings.

Table S1 EAXFS fitting parameters for Cu-RTH and Cu-SSZ-13 catalysts.

Sample	Pair	CN	R (Å)	ΔΕ	$\sigma^2(\mathring{A}^2)$	R factor
Cu _{1.0} -RTH	Cu-O	3.6 ± 0.1	1.95 ± 0.01	-3.7 ± 0.5	0.0049 ± 0.0004	0.0009
Cu _{1.4} -RTH	Cu-O	3.5 ± 0.2	1.95 ± 0.01	-3.7 ± 0.7	0.0047 ± 0.0007	0.0033
Cu _{2.5} -RTH	Cu-O	3.5 ± 0.2	1.95 ± 0.01	-3.6 ± 0.7	0.0049 ± 0.0006	0.0024
Cu _{3.5} -RTH	Cu-O	3.6 ± 0.1	1.95 ± 0.01	-3.7 ± 0.4	0.0049 ± 0.0004	0.0011
Cu _{4.4} -RTH	Cu-O	3.7 ± 0.1	1.95 ± 0.01	-3.2 ± 0.5	0.0050 ± 0.0005	0.0043
Cu _{2.5} -RTH-HTA	Cu-O	3.8 ± 0.3	1.96 ± 0.01	-6.3 ± 1.0	0.0052 ± 0.0009	0.0053
Cu _{3.5} -RTH-HTA	Cu-O	3.8 ± 0.3	1.94 ± 0.01	-6.1 ± 1.0	0.0054 ± 0.0009	0.0051
Cu _{4.4} -RTH-HTA	Cu-O	3.5 ± 0.2	1.96 ± 0.01	-2.3 ± 0.7	0.0055 ± 0.0007	0.0067

⁸³ CN: coordination number; R: distance over first shell; ΔE : edge position σ : Debye-Waller factor.