Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Supporting information for

A facile organosilane-based strategy for direct synthesis of thin MWW-type titanosilicate with high catalytic oxidation performance

Shaoqing Jin,^{‡,a} Guiju Tao,^{‡,a} Shilin Zhang,^a Yi Luo,^a Wenhua Fu,^a Zhendong Wang,^a Huanxin Gao,^a Hongmin Sun^a and Weimin Yang^{*,a}

a. State Key Laboratory of Green Chemical Engineering and Industrial Catalysis,
SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai
201208, China

‡ S. Jin and G. Tao contributed equally to this study

* To whom correspondence should be addressed

Email: yangwm.sshy@sinopec.com.

Entry	Gel composition	Hydrothermal condition	Crystallinity	
No. 1	1 SiO ₂ : 0.035 DEDMS : 0.033 TiO ₂ :	Pre-heated at 403 K and 423 K each for 1 day, then	High (Dis-ordered	
	$0.67 \; B_2O_3 : 1.4 \; PI : 30 \; H_2O$	DEDMS added, further crystallized at 443 K for 5 days	layered precursor)	
No. 2	$1\ SiO_2$: 0.035 DEDMS : 0.033 TiO_2 :	Pre-heated at 403 K for 1 day, then DEDMS added, further	Very low +	
	$0.67 \; B_2O_3: 1.4 \; PI: 30 \; H_2O$	crystallized at 423 K for 1 day, then at 443 K for 5 days	Amorphous	
No. 3	$1\ SiO_2$: 0.035 DEDMS : 0.033 TiO_2 :	Pre-heated at 403 K, 423 K and 443 K each for 1 day, then	Very high (Ordered	
	$0.67 \; B_2O_3 : 1.4 \; PI : 30 \; H_2O$	DEDMS added, further crystallized at 443 K for 4 days	layered precursor)	
No. 4	$1\ SiO_2$: 0.035 DEDMS : 0.033 TiO_2 :	Pre-heated at 423 K for 2 days, then DEDMS added, further	Low + Amorphous	
	$0.67 \; B_2O_3: 1.4 \; PI: 30 \; H_2O$	crystallized at 423 K for 5 days		
No. 5	$1\ SiO_2$: 0.035 DEDMS : 0.033 TiO_2 :	Pre-heated at 423 K for 3 days, then DEDMS added, further	High (Dis-ordered	
	$0.67 \; B_2O_3 : 1.4 \; PI : 30 \; H_2O$	crystallized at 423 K for 3 days	layered precursor)	
No. 6	1 SiO ₂ : 0.02 DEDMS : 0.033 TiO ₂ :	Pre-heated at 403 K and 423 K each for 1 day, then	Very high (Ordered	
	$0.67 \; B_2O_3: 1.4 \; PI: 30 \; H_2O$	DEDMS added, further crystallized at 443 K for 5 days	layered precursor)	
No. 7	1 SiO ₂ : 0.05 DEDMS : 0.033 TiO ₂ :	Pre-heated at 403 K and 423 K each for 1 day, then	Very low +	
	$0.67 \; B_2O_3 : 1.4 \; PI : 30 \; H_2O$	DEDMS added, further crystallized at 443 K for 5 days	Amorphous	
No. 8	$1\ SiO_2$: 0.035 DCDMS : 0.033 TiO_2 :	Pre-heated at 403 K and 423 K each for 1 day, then	High (Dis-ordered	
	$0.67 \; B_2O_3: 1.4 \; PI: 30 \; H_2O$	DEDMS added, further crystallized at 443 K for 5 days	layered precursor)	
No. 9	$1\ SiO_2$: 0.035 CDMES : 0.033 TiO_2 :	Pre-heated at 403 K and 423 K each for 1 day, then	Low + Amorphous	
	$0.67 \; B_2O_3: 1.4 \; PI: 30 \; H_2O$	DEDMS added, further crystallized at 443 K for 5 days		
No. 10	1 SiO ₂ : 0.035 CDMPS : 0.033 TiO ₂ :	Pre-heated at 403 K and 423 K each for 1 day, then	Very low +	
	$0.67 \; B_2O_3: 1.4 \; PI: 30 \; H_2O$	DEDMS added, further crystallized at 443 K for 5 days	Amorphous	

Table S1 Different recipes for the synthesis of precursors of thin Ti-MWW materials.

DEDMS: diethoxydimethylsilane; DCDMS: dichlorodimethylsilane;

_

CDMES: chlorodimethylethylsilane; CDMPS: chlorodimethylphenylsilane.

Fig. S1 Powder XRD patterns of samples synthesized with different recipes.

Fig. S2 Powder XRD patterns of as-synthesized Ti-MWW(50) (a), Ti-MWW(20) (b), Ti-MWW(30) (c), O-Ti-MWW(50) (d), O-Ti-MWW(20) (e) and O'-Ti-MWW(30) (f).

Fig. S3 Powder XRD patterns of O-Ti-MWW(50)-AT-C (a), O-Ti-MWW(20)-AT-C (b) and O'-Ti-MWW(30)-AT-C (c).

Sampla	Specific s	urface area (SS	Pore volume / cm ³ g ⁻¹		
Sample	Stotal	Sinternal	$\mathbf{S}_{\text{external}}$	V _{total}	Vmicropore
Ti-MWW(50)-AT-C	438.8	323.0	115.8	0.596	0.154
O-Ti-MWW(50)-AT-C	482.7	271.5	211.2	1.151	0.129

Table S2 Physicochemical properties of Ti-MWW(50)-AT-C and O-Ti-MWW(50)-AT-C.

Fig. S4 Nitrogen adsorption-desorption isotherms and pore size distributions (inset) of Ti-MWW(20)-AT-C (a) and O-Ti-MWW(20)-AT-C (b).

Fig. S5 SEM images of Ti-MWW(50)-AT-C (a) and O-Ti-MWW(50)-AT-C (b).

Fig. S6 29 Si NMR spectra of BTM-7d (a) and OBTM-7d (b).

Fig. S7 IR spectra of BTM-4d (a), OBTM-4d (b), BTM-7d (c) and OBTM-7d (d).

Fig. S8 A schematic diagram for possible formation mechanism of conventional Ti-MWW zeolite.

epoxidation of olefins.											
Olefin	Catalyst	Si/Ti	Conversion	Selectivity / %		TON					
Olenn		ratio	/ %	Epoxide	Diol	Others	ION				
Cycloboyono	Ti-MWW(50)-AT-C	113.9	9.4	92	8	/	128				
Cyclonexene"	O-Ti-MWW(50)-AT-C	93.6	12.4	92	8	/	139				
1 House ab	Ti-MWW(50)-AT-C	113.9	15.8	99	1	/	216				
1-Hexene [®]	O-Ti-MWW(50)-AT-C	93.6	9.2	99	1	/	103				

Table S3 Catalytic performance of Ti-MWW(50)-AT-C and O-Ti-MWW(50)-AT-C for

Reaction conditions: catalyst, 50 mg; olefin, 10 mmol; oxidant, 10 mmol; acetonitrile, 10 mL; temperature, 333 K; time, 2 h.

 a TBHP (70 wt% in water) as the oxidant, b H2O2 (30 wt%) as the oxidant.

Fig. S9 244 nm excited UV resonance Raman spectra of Ti-MWW(20)-AT-C (a) and O-Ti-MWW(20)-AT-C (b).