Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Synthesis and physico-chemical characterization of Beta-Bentonite composite materials for shaped catalysts

Zuzana Vajglová^{1,2}, Narendra Kumar¹, Markus Peurla³, Janne Peltonen³, Ivo Heinmaa⁴,

Dmitry Yu. Murzin1*

¹ Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Laboratory of Industrial Chemistry and

Reaction Engineering, Biskopsgatan 8, Turku/Åbo, Finland

² Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Eduard Hála Laboratory of Separation

Processes, Rozvojova 2/135 Prague 6, Czech Republic

³ University of Turku, Turku, Finland

⁴ National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia

*dmurzin@abo.fi, corresponding author

Supporting Information

Figure S1. XRD patterns of pristine H-Beta-25, H-Beta-150, H-Beta-300 zeolites and bentonite.

Figure S2. SEM image: Morphology of pristine bentonite.

Figure S3. TEM images of pristine materials. Scale bar $1 \mu m$.

Figure S4. TEM images of pristine materials. Scale bar 50 nm.

Figure S5. ²⁹Si MAS NMR spectrum for Bentonite sample. The spectrum (black line) is fitted with six Gaussian lines (green lines, the sum is a red line). The parameters of the component lines are given in Table S2.

Figure S6. ²⁷*Al MAS NMR spectrum of the Bentonite sample. The spectrum has been fitted with 4 Lorentzian lines, with parameters given in Table S3.*

Table S1 Elemental analysis of pristine H-Beta-25, H-Beta-150, H-Beta-300 zeolites and bentonite.

Zeolite	Binder	SiO ₂	Al_2O_3	MgO	K ₂ O	Fe ₂ O ₃	SiO	$_2/Al_2O_3$
-	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%	wt/wt	mol/mol
H-Beta-25	0	93.6	6.4	0.0	0.0	0.0	15	25
H-Beta-150	0	93.3	6.7	0.0	0.0	0.0	14	23
H-Beta-300	0	98.4	1.6	0.0	0.0	0.0	60	102
Bentonite	100	78.1	15.4	1.9	1.5	3.1	5	9

Table S2. Frequency shift, Gaussian width, relative area and total area of the components in ²⁹Si MAS NMR spectra of studied samples.*

Sample	No1	No2	No3	No4	No5	
	Bentonite	B25B10	B25B20	B25B30	B25B65	Assignment
Peak1 (ppm)	-111.3	-115.3	-115.2	-115.3	-115.3	Beta sites
width (ppm)	7.2	2	2.1	2.1	2	
Area (%)	50.2	7.5	7.2	6.8	3.6	
Peak2 (ppm)	-107.4	-111.2	-111.2	-111.3	-111.3	Beta sites
width (ppm)	1.3	2.9	2.9	2.9	2.8	
Area (%)	0.6	37.8	34.6	33.2	19.1	
Peak3 (ppm)	-101.5	-102.7	-102.7	-102.7	-103	Q ³
width (ppm)	5.8	2.9	2.8	3	3.1	
Area (%)	19.1	5	4.4	4.4	2.9	
Peak4 (ppm)	-93.4	-98.4	-99.2	-98.3	-99.6	Q ³ (1Al)
width (ppm)	5	7	6.7	6.7	7	
Area (%)	22.3	6.1	6.9	7.6	11.3	
Peak5 (ppm)	-86.5		-90.8	-89.9	-93	unresolved
width (ppm)	3.1		7	7	12.6	
Area (%)	1.8		1.8	2.3	11.9	
Peak6 (ppm)	-84.3	-110	-110	-109.8	-109.9	unresolved

width (ppm)	7.3	9	9.2	9.5	9	
Area (%)	6	43.6	45.1	45.8	51.1	
Total Area	415	828	782	759	603	

B25B10: 90% H-Beta 25 +10% Bentonite; B25B20: 80% H-Beta-25 +20% Bentonite; B25B30: 70% H-Beta-25 +30% Bentonite; B25B65: 35% H-Beta-25 + 65% Bentonite.

Table S3. Frequency shift, Lorentzian width, relative area and total area of the components in ²⁷Al MAS NMR spectra of studied samples.*

	<u>.</u>					
Sample	No1	No2	No3	No4	No5	
	Bentonite	B25B10	B25B20	B25B30	B25B65	Assignment
Peak1 (ppm)	61.1	58.3	58.2	58.3	58.9	Al IV of Beta
width (ppm)	3	3.6	4.9	5.3	7.7	
Area (%)	0.4	7.2	11.5	9.1	7.3	
Peak2 (ppm)	55.3	54.2	54.2	54.3	54.4	Al IV of Beta
width (ppm)	4.7	4.5	4.4	4.5	5.3	
Area (%)	0.6	40.9	34.5	26.6	13.5	
Peak3 (ppm)	4.7	2.3	3.3	3.6	3.9	Al VI of clay
width (ppm)	7.1	9.8	9.5	8.8	8.9	
Area (%)	87.3	21.0	22.3	25.2	31.1	
Peak4 (ppm)		-0.1	-0.1	-0.1	-0.3	Al VI of beta
width (ppm)		1.7	1.6	1.6	1.6	
Area (%)		2.6	2.1	1.8	0.7	
Peak5 (ppm)		-4.4	-4.4	-4.2	-3.7	Al VI of beta
width (ppm)		5.4	5.6	6.2	5.2	
Area (%)		6.0	6.5	5.2	1.9	
Peak6 (ppm)		-9.1	-9.0	-8.9	-7.9	Al VI
width (ppm)		4.7	4.9	5.6	4.6	
Area (%)		2.7	2.5	2.1	0.8	
Peak7 (ppm)		47.6	48.0	48.7	49.1	Al IV
width (ppm)		9.4	7.9	9.1	7.1	
Area (%)		5.3	3.5	3.4	2.0	
Peak8 (ppm)		25.3	23.7	24.5	23.7	Al V
width (ppm)		24.1	26.9	29	29.2	
Area (%)		14.2	16.9	22.7	35	
Peak9 (ppm)		-	69.2	68	65.9	
width (ppm)		-	6.9	9.6	7	
Area (%)		-	1.1	3.9	6	
Peak10 (ppm)	71.7				71.4	
width (ppm)	6.2				4.1	
Area (%)	11.7				1.7	
Total Area	968	848	922	965	1015	

B25B10: 90% H-Beta 25 +10% Bentonite; B25B20: 80% H-Beta-25 +20% Bentonite; B25B30: 70% H-Beta-25 +30% Bentonite; B25B65: 35% H-Beta-25 + 65% Bentonite.

Table S4. Frequency shifts, Gaussian width integral intensities and assignment of the resonances in the ²⁹Si MAS NMR spectrum of bentonite.

101011C Speech thin o	<i>j centonne</i> .				
	Freque ncy shift	Gauss ian width	Area	%	Assignment
	(ppm)	(ppm)			
Peak1(N	-111.33	7.24	208.45	50.2	Q ⁴ amorphous

o1)				%	
Peak2(N				0.6	Q ⁴ , quartz
o1)	-107.35	1.25	2.57	%	-
Peak3(N				19.1	Q ³ amorphous
o1)	-101.54	5.80	79.43	%	
Peak4(N				22.3	Q^{3}_{clay}
o1)	-93.36	5.03	92.71	%	,
Peak5(N				1.8	$Q^{3}_{clay}(1Al)$
o1)	-86.48	3.10	7.55	%	
Peak6(N				6.0	Q^2 , $Q^3_{clay}(1Al)$
o1)	-84.28	7.31	24.77	%	
			Sum:	100.	
			415.48	0%	

Table S5. Parameters of	f the Lorentzian	lines in ²⁷ Al s	pectrum of Bentonite.
-------------------------	------------------	-----------------------------	-----------------------

			2	415.48	0%
Table S5. Pa	arameters of the	e Lorentzian lin	nes in ²⁷ Al s	spectrum of I	Bentonite.
Benton	Frequency	width	Area	Area	Assign
ne	sniit,			70	ment
	ppm	ppm	abs	%	
Peak1	4.7	7.1	845.3	87.3	Al VI
				%	
Peak2	71.7	6.2	112.9	11.7	Al IV
				%	
Peak3	55.3	4.7	6.1	0.6%	Al IV
Peak4	61.1	3.0	4.0	0.4%	Al IV
-		Sum:	968.2	100.0	
				%	
		1		1	