Supporting Information for

A new approach to construct a hydrodesulfurization catalyst from a crystalline precursor: ligand-induced self-assembly, sulfidation and hydrodesulfurization

Jilei Liang^{a, b, †}, Mengmeng Wu^{a, b, †}, Jinjin Wang^a, Pinghe Wei^b, Bingfeng Sun^b, Yukun Lu^{a, *}, Daofeng Sun^a, Yunqi Liu^{a, *}, and Chenguang Liu^a

^a State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266555, P. R. China

^b Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, P. R. China

[†] These authors contributed equally to this work.

*Corresponding Authors

E-mail: lyk@upc.edu.cn (Y.K Lu), liuyq@upc.edu.cn (Y.Q Liu)

Items	PMo ₁₁ Ni Mo ₂ Ni		
Empirical formula	$C_{40}H_{47}Ni_2Mo_{11}N_8O_{45}P$	$C_{30}H_{24}Mo_4N_6Ni_2O_{14}$	
CCDC	943445	943446	
Formula weight	2563.59	1194	
Crystal system	triclinic	triclinic	
Space group	P-1(2)	P-1(2)	
a (Å)	11.4548(7)	7.1747(5)	
b (Å)	15.2635(11)	11.1258(13)	
c (Å)	20.3065(13)) 11.4017(8)	
α	92.623(5)	98.021(8)	
β	91.039(5)	90.098(6)	
γ	110.491(6)	106.227(8)	
V (Å ³)	3320.1(4)	864.53(13)	
Z	2	2	
D_{calc} (g cm ⁻³)	2.564	2.293	
Crystal size (mm)	0.18×0.13×0.10	0.12×0.11×0.15	
Absorption coefficient (mm ⁻¹)	2.690	2.690	
F(000)	2472	2472	
Theta range for data collection (°)	2.71-25.00	2.71-25.00	
Limiting indices	-13≤h≤12	-13≤h≤12	
	-17≤k≤18	-17≤k≤18	
	-22≤l≤24	-22≤l≤24	
Data/restraints/parameters	11686/42/983	11686/42/983	
Goodness-of-fit on F^2	1.018	18 1.018	
<i>T</i> (K)	293	293	
λ (Å)	0.71073	0.71073	
$R_1^{a}, w R_2^{b} (I \ge 2\sigma(I))$	0.0483, 0.0822	0.0537, 0.0822	
R_1^{a} , wR_2^{b} (all data)	0.0893, 0.1027	0.0893, 0.0925	

Table S1 Crystal Data and Structure Refinement for Mo₂Ni and PMo₁₁Ni.^{1, 2}

^a**R**₁ = $\sum ||F_o| - |F_c|| / \sum |F_o|$. ^bw**R**₂ = $\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]^{1/2}$

Crystal Data: CCDC 943445 and 943446 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* <u>www.ccdc.cam.ac.uk/data_request/cif.</u>

Fig. S1 Two-dimensional layered structure consisting of 6-member $\{Mo_4Ni_2\}$ rings viewed along the *ac* plane in Mo₂Ni.¹

Fig. S2 TPS profiles of bulk Mo₂Ni and PMo₁₁Ni.

Fig. S3 POMs-based supramolecular synthon in $PMo_{11}Ni$.²

Fig. S4 The coordination environment of Mo-O in Mo₂Ni.

Mo1-Oa	1.729	Mo1-Ob	1.853
Mo2-Oa	1.721	Mo2-Ob	1.953
Σ	1.725	Σ	1.903

Fig. S5 The coordination environment of Mo-O in PMo₁₁Ni.

Fig. S6 Deconvolution of S 2p XPS spectra of Mo₂Ni and PMo₁₁Ni sulfides.

Table S3 The bond length (Å) of Mo-O in $PMo_{11}Ni$.

Mo1-Oa	1.677	Mo1-Ob	1.937	Mo1-Oc	1.901
Mo2-Oa	1.681	Mo2-Ob	1.948	Mo2-Oc	1.903
Mo3-Oa	1.681	Mo3-Ob	1.914	Mo3-Oc	2.016
Mo4-Oa	1.681	Mo4-Ob	1.976	Mo4-Oc	1.963
Mo5-Oa	1.689	Mo5-Ob	1.887	Mo5-Oc	1.875
Mo6-Oa	1.681	Mo6-Ob	1.943	Mo6-Oc	1.953
Mo7-Oa	1.682	Mo7-Ob	1.864	Mo7-Oc	1.952
Mo8-Oa	1.696	Mo8-Ob	1.884	Mo8-Oc	1.896
Mo9-Oa	1.679	Mo9-Ob	2.017	Mo9-Oc	2.016
Mo10-Oa	1.677	Mo10-Ob	2.022	Mo10-Oc	1.937
Mo11-Oa	1.682	Mo11-Ob	2.012	Mo11-Oc	1.854
Σ	1.682	Σ	1.946	Σ	1.933

References

- 1. J. Liang, Y. Lu, J. Zhao, X. Li, Y. Pan, M. Wu, Y. Liu, C. Liu, RSC Adv., 2014, 4, 27787-27790.
- J. Liang, H. Zhang, Y. Lu, H. Guo, J. Zhao, M. Wu, Y. Liu, C. Liu, *Inorg. Chem. Commun.*, 2014,
 45, 135-139.