Supplementary material

Selective production of aromatics from CO₂

Yuebing Xu, Chengming Shi, Bing Liu, Ting Wang, Jiao Zheng, Wenping Li, Dapeng Liu, Xiaohao Liu*

Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China

* Corresponding author: E-mail address: *liuxh@jiangnan.edu.cn*.

Fig. S1. SEM observations of Fe_3O_4 and HZSM-5 (Si/Al = 12.5).

Fig. S2. NH₃-TPD profiles of fresh HZSM-5 zeolites.

Fig. S3. XRD patterns of as-received and calcined Fe₃O₄ and Na/Fe₃O₄.

Fig. S4. Time-dependences of CO₂ conversion and hydrocarbon distribution obtained over (a) Fe, (b) Mn/Fe and (c) Na/Fe catalysts at 340 °C, 1 MPa, 4800 mL g⁻¹ h⁻¹ and H₂/CO₂ ratio of 3, and (d) Na/Fe catalyst at 320 °C and (e) Na/Fe catalyst at 320 °C and 2400 mL g⁻¹ h⁻¹.

Fig. S5. CO-TPD and H₂-TPD profiles of reduced Fe and Na/Fe catalysts.

Fig. S6. Aromatic distribution obtained at different space velocities over the composite Na/Fe and HZSM-5 (Si/Al = 12.5) catalyst system.

Fig. S7. Catalytic hydrogenation of CO (time-dependence of CO conversion and the CO₂-free selectivities to CH₄, $C_2^{=}$ - $C_4^{=}$, C_2^{0} - C_4^{0} and C_{5+}) over the composite Na/Fe and HZSM-5 (Si/Al = 12.5) catalyst system at the conditions of 340 °C, 1 MPa, 4800 mL g⁻¹ h⁻¹ and H₂/CO = 2.

Fig. S8. GC spectrum of liquid hydrocarbon obtained from CO hydrogenation over the composite Na/Fe and HZSM-5 catalyst system at 340 °C, 1 MPa, 4800 mL g⁻¹ h⁻¹ and H₂/CO = 2. The numbers of 1-16 present the aromatic hydrocarbons whose names are same with those in Fig. 5 in main text. The inserted figure shows the distribution of hydrocarbons by integration of the GC spectrum.

Fig. S9. TG profiles of spent HZSM-5 samples collected from tests over the composite Na/Fe and HZSM-5 (Si/Al = 12.5) catalyst system at different reaction temperatures. The first stage of weight loss is attributed to H_2O desorption and the second one is the burning of coke which is used to calculate the coke content in sample (wt%).

Fig. S10. XRD patterns of fresh HZSM-5 and the spent one collected after 40 h reaction (Fig. 8 in main text).

Fig. S11. ²⁷Al NMR spectrum of fresh HZSM-5 zeolite and the spent one collected from the 40-h reaction (Fig. 8 in main text).

Fig. S12. Front and side views of HZSM-5 (a) and (b) and 2HZSM-5 (c) and (d). Red: O atoms; yellow: Si atoms; purple: Al atoms; white: H atoms.

Fig. S13. Calculated energy profiles of isomerization and aromatization reactions over HZSM-5.

Fig. S14. Calculated intermediates in the isomerization (black) and aromatization (red) reactions over HZSM-5. Red: O atoms; yellow: Si atoms; purple: Al atoms; grey: C atoms; white: H atoms.

Fig. S15. SEM observation of SiO₂-coated HZSM-5 (Si/Al = 12.5) zeolite.

Fig. S16. SEM images and EDS analysis of parent HZSM-5 and its SiO₂-coated sample.

Fig. S17. XRD patterns of (a) spent Na/Fe catalyst samples collected from the tests of 10 h and 100 h and (b) fresh HZSM-5 (Si/Al = 12.5), fresh and spent SiO₂-coated HZSM-5 samples collected from the tests of 10 h and 100 h.

Fig. S18. GC spectrum of liquid hydrocarbon product separated by a FFAP capillary column. (a) standard xylenes (black line); (b) sample obtained from the 40-h test over the composite Na/Fe and HZSM-5 catalyst system (orange line); (c) sample obtained from the 10-h test over the Na/Fe and SiO₂-coated HZSM-5 catalyst system (green line).

Fig. S19. GC spectrum of liquid hydrocarbon product separated by a Bentone-34 capillary column under a condition of initial temperature of 50 °C maintaining for 3 min, heating rate of 2 °C min⁻¹ to final temperature of 90 °C: (a) standard ethyltoluene mixture (black line); (b) sample obtained from the 40-h test over the composite Na/Fe and HZSM-5 catalyst system (orange line); (c) sample obtained from the 10-h test over the composite Na/Fe and SiO₂-coated HZSM-5 catalyst system (green line).

Fig. S20. Distribution of *m*-, *o*- and *p*-ethyltoluene (bar) in total ethyltoluene and the content of the ethyltoluene (\bullet) in total aromatics obtained over the composite Na/Fe and HZSM-5 (Si/Al = 12.5) catalyst system (weight ratio of 1:0.5) at 340 °C, 4800 mL g⁻¹ h⁻¹, H₂/CO₂ = 3 and (a) 1 MPa; (b) 2 MPa; (c) 1 MPa for 40 h; and over the composite Na/Fe and SiO₂-coated HZSM-5 (Si/Al = 12.5) catalyst system at the same reaction condition (1 MPa) for (e) 10 h and (f) 100 h.

Fig. S21. TG profiles of spent SiO₂-coated HZSM-5 samples collected from 10 h and 100 h tests over the composite Na/Fe and SiO₂-coated HZSM-5 (Si/Al = 12.5) catalyst system at 340 °C, 1 MPa, 4800 mL g⁻¹ h⁻¹.

Feed ^{<i>a</i>)}	Composite Na/Fe and HZSM-5 system and reaction duration	CO ₂ or CO conv. /%	CO or CO ₂ sel. /C%	Hydroca						
				CH ₄	$C_2^{=}-C_4^{=}$	$n - C_2^{\ 0} - C_4^{\ 0}$	i-C ₄ ⁰	Liquid phase		Aromatic content in
								$C_{5+}^{\ \ b)}$	Aromatics	C ₅₊ inquite pliase /C %
$H_2/CO = 2$	Si/Al = 12.5, 10 h	88.2	41.5	13.8	20.8	8.0	0.6	34.2	22.6	39.8
$H_2/CO_2 = 3$	Si/Al = 12.5, 40 h	32.3	21.9	28.7	6.9	12.0	7.3	6.6	38.5	85.3
$H_2/CO_2 = 3$	Si/Al = 150, 10 h	32.0	23.1	20.9	27.1	5.0	0.3	18.4	28.3	60.5
$H_2/CO_2 = 3$	SiO ₂ -coated, 10 h	30.9	26.8	22.4	21.9	7.8	2.1	4.1	44.7	91.6
$H_2/CO_2 = 3$	SiO ₂ -coated, 100 h	30.6	27.1	34.4	25.4	8.0	0.6	9.4	22.2	70.3

Table S1. Hydrogenation of CO or CO₂ over the composite Na/Fe and HZSM-5 catalyst systems.

^{*a*)} Reaction condition: 340 °C, 1 MPa, 4800 mL g⁻¹ h⁻¹; ^{*b*)} Nonaromatic hydrocarbons including *iso*-paraffins mainly and *cyclo*-paraffins.

Table S2. Aromatic distribution in total aromatic hydrocarbons (related with Table S1).

	Composite Na/Fe and HZSM-5 system and reaction duration	Aromatic fraction in total aromatic hydrocarbons /C%									
Feed ^{a)}		\bigcirc	\bigcirc	\bigcirc		(\mathbf{x})	3C-branched benzenes	4C-branched benzenes	$\langle \rangle \rangle$	Branched naphthalene	
$H_2/CO = 2$	Si/Al = 12.5, 10 h	4.4	17.7	6.1	24.8	6.3	25.7	12.0	0.7	2.3	
$H_2/CO_2 = 3$	Si/Al = 12.5, 40 h	1.5	17.6	6.1	28.5	8.6	28.2	7.4	0.8	1.3	
$H_2/CO_2 = 3$	Si/Al = 150, 10 h	1.9	7.9	4.0	21.1	3.9	33.5	24.1	2.1	1.5	
$H_2/CO_2 = 3$	SiO ₂ -coated, 10 h	0.6	13.8	6.3	35.8	3.3	28.2	8.9	1.2	1.9	
$H_2/CO_2 = 3$	SiO ₂ -coated, 100 h	0.9	9.8	6.9	29.5	5.9	30.2	14.3	1.1	1.4	

^{*a*)} Reaction condition: 340 °C, 1 MPa, 4800 mL g⁻¹ h⁻¹.