Supporting information

Probing the promotional roles of cerium in structure and performance of Cu/SiO₂ catalysts for ethanol production

Peipei Ai^{a, ‡}, Minghui Tan^{c, ‡}, Prasert Reubroycharoen^d, Yang Wang ^b, Xiaobo Feng ^b, Guoguo Liu^b, Guohui Yang^{b, c, *}, Noritatsu Tsubaki^{b, *}

^a Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
^b Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
^c State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
^d Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
* Corresponding Author: E-mail: yanggh@sxicc.ac.cn (Guohui Yang) tsubaki@eng.u-

[‡] These authors contributed equally to this work.

toyama.ac.jp (Noritatsu Tsubaki)

Figure S1 In situ XRD patterns after reduction at different temperatures for the calcined

 $2Ce-Cu/SiO_2$ catalyst.

Figure S2 N₂ physisorption isotherms of (a) SiO₂, (b) 1Ce/SiO₂, (c) Cu/SiO₂, (d) 0.5Ce-Cu/SiO₂, (e) 1Ce-Cu/SiO₂, (f) 1.5Ce-Cu/SiO₂, (g) 2Ce-Cu/SiO₂, (h) Cu/CeO₂, (i)1Ce-Cu/SiO₂-i and (j) 1Ce-Cu/SiO₂ catalysts.

Figure S3 Ce XPS of reduced (a) 0.5Ce-Cu/SiO₂, (b) 1Ce-Cu/SiO₂, (c) 1.5Ce-Cu/SiO₂,

and (d) 2Ce-Cu/SiO₂ catalysts.

Figure S4 XRD pattern of spent Cu/SiO_2 catalyst after 100 h reaction.

Figure S5 TEM image and particles size distribution of spent Cu/SiO_2 catalyst.

Figure S6 TEM image and particles size distribution of spent 1Ce-Cu/SiO₂ catalyst.

	Т	Conv. (%)	Sel. (%)			
Catalyst			Ethanol	MG	EG	Others
1Ce-Cu/SiO ₂	300	100.0	88.6	0.8	0.8	9.8
1Ce-Cu/SiO ₂	280	100.0	91.8	0.5	0.7	7.0
1Ce-Cu/SiO ₂	260	99.8	73.2	1.0	9.8	16.0
1Ce-Cu/SiO ₂	240	99.8	31.3	0.5	55.7	12.5
1Ce-Cu/SiO ₂	220	99.5	8.6	0.6	85.4	5.4
1Ce-Cu/SiO ₂	200	99.5	2.2	0.1	95.7	2.0
1Ce-Cu/SiO ₂	180	87.9	0.6	22.9	71.7	4.8

 Table S1 Catalytic performance of 1Ce-Cu/SiO2 catalysts under different reaction

 temperature

Reaction conditions: P = 2.5 MPa, WHSV = 0.8 h⁻¹, H₂/DMO molar ratio = 200, reaction time= 8 h. MG: methyl glycolate, EG: ethylene glycol, others mainly consist of methyl methoxyacetate, methyl acetate, 1, 2-propanediol, 1, 2-butanediol and dimethyl carbonate.