Supporting information

Novel nonmetal catalyst of supported tetraphenylphosphonium bromide for acetylene hydrochlorination

Xiaoyan Li^{a, b}, Yao Nian^a, Shanshan Shang^c, Haiyang Zhang^d, Jinli

Zhang^{a,d}, You Han^{a*}, Wei Li^{a*}

^a School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, P. R. China.

Renai College, Tianjin University, Tianjin 301636, China

^b Department of Chemical Engineering, Renai College of Tianjin University, Tianjin 301636, P. R. China.

^c School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.

^d School of Chemistry and Chemical Engineering, Shihezi University, Shihezi,

Xinjiang, 832000, P. R. China.

	A (Before	After	Δ(e)	
	Atoms	adsorption (e)	Adsorption (e)		
UCI	Cl	-0.123	-0.272	-0.149	
HCl	H1	0.123	0.048	-0.074	
	C1	-0.093	-0.085	0.008	
СЦ	C2	-0.093	-0.127	-0.035	
C_2H_2	H2	0.093	0.058	-0.035	
	Н3	0.093	0.078	-0.015	
	H1	0.050	0.033	-0.016	
	Cl	-0.067	-0.082	-0.015	
	C1	-0.081	-0.071	0.010	
C ₂ H ₃ Cl	C2	-0.008	-0.023	-0.015	
	H2	0.052	0.052	0.000	
	Н3	0.054	0.045	-0.008	

Table S1 The charge variations in atoms of HCl, C_2H_2 and C_2H_3Cl adsorbed on TPPB.

Table S2 The dihedral angle variations between atoms of HCl and C_2H_2 adsorbed on

TPPB.

	Dihedral Angle between atoms (°)								
	C2-C3-P7-C8	C2-C3-P7-C8 C9-C8-P7-C19 C18-C19-P7-C24		C23-C24-P7-C3					
Free TPPB	-69.546	-48.563	-176.300	-153.375					
TPPB-C ₂ H ₂	-69.346	-49.383	-167.562	-160.655					
Δ change	0.201	-0.819	8.737	-7.279					
TPPB-HC1	-69.950	-47.696	-170.516	-157.465					
Δ change	-0.404	0.868	5.783	-4.090					

The atomic numbers of HCl, C_2H_2 and TPPB can be seen in Figure S1.

Molecule	Atom	Free	Co-ads	∆e (atom) (Co-ads - Free)	∆e (molecule) (Co-ads - Free)	IM	∆e (_{atom}) (IM - Co-ads)	∆e (molecule) (IM - Co- ads)	TS	∆e (atom) (TS-IM)	∆e (_{molecule}) (TS - IM)	Pr-ads	∆e (_{atom}) (Pr-ads - TS)	∆e (molecule) (Pr-ads - TS)
C ₂ H ₂	Н2	0.093	0.062	-0.031	-0.060	0.084	0.023	0.020	0.094	0.010	0.197	0.052	-0.042	0.273
	C1	-0.093	-0.086	0.007		-0.109	-0.023		-0.071	0.038		-0.071	0.000	
	C2	-0.093	-0.118	-0.025		-0.070	0.048		0.059	0.129		-0.023	-0.082	
	Н3	0.093	0.082	-0.011		0.054	-0.027		0.075	0.020		0.045	-0.029	
НСІ	Cl	-0.123	-0.255	-0.132	-0.204	-0.603	-0.348	-0.325	-0.521	0.082	0.055	-0.082	0.439	
	H1	0.123	0.051	-0.072		0.074	0.022		0.047	-0.027		0.033	-0.013	
ТРРВ	Br-	-0.668	-0.478	0.190	0.264	-0.146	0.331	0.305	-0.398	-0.251	-0.252	-0.634	-0.236	-0.273
ITTD	PPh ⁴⁺	0.668	0.742	0.074	0.264	0.716	-0.026	0.303	0.715	-0.001	-0.232	0.678	-0.037	-0.275

Table S3 The charge variations of atoms and molecules for the reactants and the product during the reaction.

Fig. S1 The stable structures of TPPB (a), TPPB- C_2H_2 (b) and TPPB-HCl (c). Carbon, hydrogen, bromine, phosphorus and chlorine atoms are depicted in gray, white, red, orange and green, respectively.

Fig. S2 IRC calculation for acetylene hydrochlorination with (a) and without (b) TPPB catalyst.

Fig. S3 The geometries of the substances involved in the reaction pathway without catalyst. Carbon, hydrogen and chlorine atoms are depicted in gray, white and green, respectively.

Fig. S4 TGA curves of the fresh and spent 15% TPPB/SAC catalysts (after 40 h reaction, under the reaction conditions of 220 °C, GHSV (C_2H_2) = 30 h⁻¹ and V_{HCl}/V_{C2H2} =1.15) in air atmosphere.