Supporting Information

for

In situ Hydrothermal Etching Fabrication of CaTiO₃ on TiO₂ Nanosheets for Heterojunction Effect to Enhance CO₂ Adsorption and Photocatalytic Reduction

Jinjin Lin, Jiangshan Hu, Chengwei Qiu, Huijuan Huang, Lu Chen, Yanyu Xie, Zizhong Zhang*, Huaxiang Lin and Xuxu Wang*

State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, College

of Chemistry, Fuzhou University, P. R. China

E-Mail: z.zhang@fzu.edu.cn; xwang@fzu.edu.cn

Tel: +86-591-22865859

Fig. S1 The possible structure of CaTiO₃/TiO₂ composite.

Fig. S2 (a) XRD spectra of mechanical mixture with 1:2, 1:1 and 2:1 ratio of CaTiO₃ (H) to TiO₂. (b) Plot of area ratios of the 2 θ at 33.06° for CaTiO₃ (H) (112) to the 2 θ at 25.28° for TiO₂ (101) (A_{CaTiO3(H)}/ A_{TiO2}) versus weight ratios of CaTiO₃ (H) to TiO₂ (W_{CaTiO3(H)}/W_{TiO2}).

	CaTiO ₃ /TiO ₂ -0.4g	CaTiO ₃ /TiO ₂ -0.3g	CaTiO ₃ /TiO ₂ -0.2g	CaTiO ₃ /TiO ₂ -0.1g
$A_{CaTiO_3(H)}/A_{TiO_2}$	0.098	0.153	0.276	0.762
$W_{CaTiO_3(H)}/W_{TiO_2}$	8.6 %	13.4 %	24.2 %	66.7 %

Table S1. The CaTiO₃ (H) content of the CaTiO₃/TiO₂ samples.

The weight fraction of CaTiO₃ (H), W_{CaTiO³(H)}, can be estimated by semiquantitative analysis of the phase

composition of the samples by XRD spectroscopy (shown in Fig. S1). And the weight fraction of $CaTiO_3$ (H) of the CaTiO₃/TiO₂ samples could be worked out from the XRD peak intensities using the following formula:

$$W_{CaTiO_3(H)}/W_{TiO_2} = 0.87619 * (A_{CaTiO_3(H)}/A_{TiO_2})$$

Where $A_{CaTiO3(H)}$ and A_{TiO2} represent the X-ray integrated intensities of CaTiO₃ (H) (112) and TiO₂ (101) diffraction peaks, respectively. To estimate the weight fraction of the CaTiO₃ (H) in the samples by XRD spectroscopy, pure CaTiO₃ (H) and TiO₂ were mixed mechanically at the given weight ratios and ground carefully to mix sufficiently. Fig. S1a displays the XRD spectra of the mechanical mixture with 1:2, 1:1 and 2:1 ratio of CaTiO₃ (H) to TiO₂. The relationship between the area ratios of the 2 θ at 33.06° for CaTiO₃ (H) (112) to the 2 θ at 25.28° for TiO₂ (101) ($A_{CaTiO3(H)}/A_{TiO2}$) and the weight ratios of CaTiO₃ (H) to TiO₂ ($W_{CaTiO3(H)}/W_{TiO2}$) is plotted in Fig. S1b. It could be seen that a linear relationship between the band area ratios and the weight ratios of CaTiO₃ (H) to TiO₂ in the mixture is obtained. The anatase content in these samples (shown in details in Table S1) was ca. 13.4 % by calculation.

Fig. S3 The N₂ adsorption-desorption isotherms of TiO₂ (a), 8.6%CaTiO₃/TiO₂ (b), 13.4%CaTiO₃/TiO₂ (c),

24.2%CaTiO₃/TiO₂ (d), 66.7%CaTiO₃/TiO₂ (e) and CaTiO₃ (H) (f) samples.

Fig. S4 The statistics of the side length of TiO_2 .

Fig. S5 The products of 13.4%CaTiO₃/TiO₂ sample on the photocatalytic CO₂ reduction.

Fig. S6 The XRD spectra of TiO₂ and CaTiO₃ (M).

Fig. S7 The XRD spectra of 13.4%CaTiO₃/TiO₂ before and after reaction.

Fig. S8 The isotopic experiments of 13.4%CaTiO₃/TiO₂.

Fig. S9 The function of time of 13.4%CaTiO₃/TiO₂ irradiated by UV-visible light.

Fig. S10 CPDs of TiO_2 (a) and $CaTiO_3$ (H) (b) surface at scan measurement over 1.21 mm² area.