Supporting Information

Electrochemically Chopped WS₂ Quantum Dots as an Efficient and Stable Electrocatalyst for Water Reduction

S. Anantharaj^{†,‡,?}, Manila O. Valappil^{†,‡,?}, K. Karthick^{†,‡}, Vijayamohanan K. Pillai^{†,‡,}Subbiah Alwarappan^{†,‡,*}and Subrata Kundu^{†‡*}

[†]Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus, New Delhi, India

[‡]CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India

^eThese authors have contributed equally.

E-mail: kundu.subrata@gmail.com;salwarap@gmail.com.

Reagents and Instruments

Sulphuric acid was purchased from RANKEM India. Commercial Pt/C 20 wt.% catalyst and 5 % Nafion suspension in alcohol water mixture were obtained from Sigma Aldrich. High purity WS₂ (99.9%) was procured from Alfa Aesar. LiClO₄ and the solvent propylene carbonate were procured from Merck and Thermofischer Scientific. Hg/HgSO₄ reference electrodewas purchased from CH InstrumentsPvt. Ltd. Deionized water (18.2 MΩcm⁻²) was used for the entire electrochemical study wherever required. TEM analysis was done with TECNAI made which operates with 200 kV bias. TheEnergy Dispersive X-ray Spectroscopy (EDS) analysis was done with the HR-TEM instrument (TECNAI) with a separate EDS detector connected to that instrument. The XRD analysis was done with a scanning rate of 5° min⁻¹ using a Bruker X-ray powder diffractometer (XRD) with Cu K_α radiation ($\lambda = 0.154$ nm). X-ray photoelectron spectroscopic (XPS) analysis was performed using a Theta Probe AR-XPSsystem (Thermo Fisher Scientific, UK). UV-Vis and PL spectra were acquired with UNICO double beam spectrophotometer. Electrochemical analyzer AUTOLAB version AUT86853 was used for the entire electrochemical characterization.

Lsec: 655.2 0 Cnts 0.000 keV Det: Apollo XLT2 SUTW Det

Fig. S1: EDS spectrum of WS₂ QDs showing the presence of W and S for various shells.

Fig. S2: (a-b)UV-Vis spectrum of Bulk WS_2 and WS_2 QDs showing differences in their absorption features.

Fig. S3: PL spectrum of WS_2 QDs obtained with an exciting wavelength of 350 nm.

Fig. S4: Plot of *j* vs. overpotential measured at repeated experiments showing the high reproducibility with minimum magnitude of deviation.

Fig. S5: CVs recorded for WS_2 QDs/CFP electrode in a non-faradaic region with increasing scan rate for the determination of ECSA from its double layer capacitance.

Fig. S6: Nyquist plots of WS₂ QDs/CFP interface obtained before and after stability studies.

Fig. S7: pH dependent LSVs of WS₂ QDs/CFP interface acquired at 5 mV s⁻¹ without iR drop compensation.

Fig. S8: XRD pattern of WS2 QDs/CFP electrode after prolonged chronoamperometry.

Catalyst	Loading (mg cm ⁻²)	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope mV/dec	Reference
Bulk WS ₂ Sheets	0.205	522	159	This work
WS ₂ QDs	0.0132	255	90	This work
WS ₂ -CNT	(a)	684	182	J. Mater. Chem. A, 2015, 3, 14609– 14616
NiWSx	(a)	340 (5 mA cm ⁻²)	96	Energy Environ. Sci., 2013, 6, 2452-
CoWSx	(a)	$238 (5 \text{ mA cm}^{-2})$	78	2459
WS ₂ -ND	0.0163	~120	51	ACS Nano, 2016, 10, 2159–2166
WS ₂ -NF	0.35	~410	48	Angew. Chem. Int. Ed. 2014, 53, 7860 -7863
WS ₂ -NF	1	~355	200	Nano Research 2013, 6,921–928
WS ₂ @NCNF	(a)	240	110	ACS Appl. Mater. Interfaces., 2015, 7, 28116–28121
WS ₂ -NR	(a)	225	68	Adv. Energy Mater. 2014, 4, 1301875
WS ₂ -NS	(a)	~215	60	Nature Materials. 2013, 12, 850-853
WS ₂ -NS	0.285	150	138	Applied Catalysis B: Environmental 125 (2012) 59–66
WS ₂ -NS on Au foil	(a)	~325	100-104	Nano Research., 8, (2015) 2881-2890
amorphous NiWS	(a)	265	55	Applied Surface Science., 341 (2015)
amorphous CoWS	(a)	330	74	149–156
WS _{2(1-x)} Se _{2x}	0.21	~ 255	105	Acs Nano., 8 (2014), 8468-8476
$WS_{2(1-x)}Se_{2x}$ NR	~0.30± 0.02	170	68	Adv. Funct. Mater. 2015, 25, 6077– 6083
$WS_{2(1-x)}Se_{2x}$ on NiSe ₂ foam	5.4	88	46.7	Nano Lett. 2016, 16, 7604-7609
WS ₂ -G	~ 6	119	43	J. Mater. Chem. A, 2016, 4, 9472– 9476
WS ₂ /rGO hybrid NS	0.4	~ 260	58	Angew. Chem. Int. Ed. 2013, 52, 13751 –13754
WS ₂ -G	(a)	229	73	Nanoscale, 2015, 7, 14760–14765
(WS ₃ -x)	(a)	494	43.7	ACS Appl. Mater. Interfaces 2016, 8, 3948–3957
WSe ₂	(a)	300	77.4	Nano Lett. 2013, 13, 3426–3433

Table S1: Results of the electrocatalytic HER study in comparison with other reports

Note: (a) - There is no information on the loading of the catalyst compared here. ' \sim ' denotes that the corresponding values were calculated from the available related data in the cited reports.