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Reagents and Instruments

Sulphuric acid was purchased from RANKEM India. Commercial Pt/C 20 wt.% catalyst 

and 5 % Nafion suspension in alcohol water mixture were obtained from Sigma Aldrich. High 

purity WS2 (99.9%) was procured from Alfa Aesar. LiClO4 and the solvent propylene carbonate 

were procured from Merck and Thermofischer Scientific. Hg/HgSO4 reference electrodewas 

purchased from CH InstrumentsPvt. Ltd. Deionized water (18.2 MΩcm-2) was used for the entire 

electrochemical study wherever required. TEM analysis was done with TECNAI made which 

operates with 200 kV bias. TheEnergy Dispersive X-ray Spectroscopy (EDS) analysis was done 

with the HR-TEM instrument (TECNAI) with a separate EDS detector connected to that 

instrument. The XRD analysis was done with a scanning rate of 5° min-1 using a Bruker X-ray 

powder diffractometer (XRD) with Cu Kα radiation (λ = 0.154 nm). X-ray photoelectron 

spectroscopic (XPS) analysis was performed using a Theta Probe AR-XPSsystem (Thermo 

Fisher Scientific, UK). UV-Vis and PL spectra were acquired with UNICO double beam 

spectrophotometer. Electrochemical analyzer AUTOLAB version AUT86853 was used for the 

entire electrochemical characterization. 



S3

Fig. S1: EDS spectrum of WS2 QDs showing the presence of W and S for various shells.
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Fig. S2: (a-b)UV-Vis spectrum of Bulk WS2 and WS2 QDs showing differences in their 

absorption features.
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Fig. S3: PL spectrum of WS2 QDs obtained with an exciting wavelength of 350 nm.
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Fig. S4: Plot of j vs. overpotential measured at repeated experiments showing the high 

reproducibility with minimum magnitude of deviation.
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Fig. S5: CVs recorded for WS2 QDs/CFP electrode in a non-faradaic region with increasing scan 

rate for the determination of ECSA from its double layer capacitance.
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Fig. S6: Nyquist plots of WS2 QDs/CFP interface obtained before and after stability studies.
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Fig. S7: pH dependent LSVs of WS2 QDs/CFP interface acquired at 5 mV s-1 without iR drop 

compensation.
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Fig. S8: XRD pattern of WS2 QDs/CFP electrode after prolonged chronoamperometry.
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Table S1: Results of the electrocatalytic HER study in comparison with other reports

Catalyst Loading
(mg cm-2)

Overpotential at
10 mA cm-2 (mV)

Tafel slope
mV/dec

          Reference

Bulk WS2 Sheets 0.205 522 159 This work

WS2 QDs 0.0132 255 90 This work
WS2-CNT (a) 684 182 J. Mater. Chem. A, 2015, 3, 14609–

14616
NiWSx
CoWSx

(a)
(a)

340 (5 mA cm-2)
238 (5 mA cm-2)

96
78

Energy Environ. Sci., 2013, 6, 2452–
2459

WS2-ND 0.0163 ~120 51 ACS Nano, 2016, 10, 2159−2166
WS2-NF 0.35 ~410 48 Angew. Chem. Int. Ed. 2014, 53, 7860 

–7863
WS2-NF 1 ~355 200 Nano Research 2013, 6,921–928

WS2@NCNF (a) 240 110 ACS Appl. Mater. Interfaces., 2015, 7, 
28116−28121

WS2-NR (a) 225 68 Adv. Energy Mater. 2014, 4, 1301875

WS2-NS (a) ~215 60 Nature Materials. 2013, 12, 850-853

WS2-NS 0.285 150 138 Applied Catalysis B: 
Environmental.,125 (2012) 59– 66

WS2-NS on Au foil (a) ~325 100-104 Nano Research., 8,  (2015) 2881-2890

amorphous NiWS
amorphous CoWS

(a)
(a)

265
330

55
74

Applied Surface Science., 341 (2015) 
149–156

WS2(1-x)Se2x 0.21 ~ 255 105 Acs Nano., 8 (2014), 8468-8476
WS2(1-x)Se2x  NR ~0.30± 0.02 170 68 Adv. Funct. Mater. 2015, 25, 6077–

6083
WS2(1-x)Se2x  on 

NiSe2 foam
5.4 88 46.7 Nano Lett. 2016, 16, 7604−7609

WS2-G ~ 6 119 43 J. Mater. Chem. A, 2016, 4, 9472–
9476

WS2/rGO hybrid NS 0.4 ~ 260 58 Angew. Chem. Int. Ed. 2013, 52, 
13751 –13754

WS2-G (a) 229 73 Nanoscale, 2015, 7, 14760–14765

(WS3−x) (a) 494 43.7 ACS Appl. Mater. Interfaces 2016, 8, 
3948−3957

WSe2 (a) 300 77.4 Nano Lett. 2013, 13, 3426−3433
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Note: (a) - There is no information on the loading of the catalyst compared here. ‘~’ denotes that 

the corresponding values were calculated from the available related data in the cited reports.


