Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Identification of the Structure of the Bi Promoted Pt Non-oxidative Coupling of Methane Catalyst: A Nanoscale Pt₃Bi Intermetallic Alloy

Johnny Zhu Chen,¹ Zhenwei Wu,^{1,2} Xiaoben Zhang,³ Slgi Choi,¹ Yang Xiao,¹ Arvind Varma,¹ Wei Liu,³ Guanghui Zhang,^{1,4*} and Jeffrey T. Miller^{1*}

 ¹ Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907, United States
 ² School of Chemical Engineering, Stanford University, 381 North-South Mall, Stanford, CA 94305, United States.
 ³ Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
 ⁴ State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China

E-mails: gzhang@dlut.edu.cn, mill1194@purdue.edu

Mears Criterion for External Diffusion Limitations

External diffusion are negligible if $\frac{r_{obs} \cdot \rho_{cat} \cdot R \cdot n}{k_c \cdot C} < 0.15$

 r_{obs} - measured reaction rate, mol/(g_{cat} · s)

 ρ_{cat} - catalyst density, g/m³

R- catalyst pellet radius, m

n- reaction order

kc- mass transfer coefficient, m/s

C- bulk concentration

For propane dehydrogenation at 550°C for the most active catalyst 2Pt/SiO₂:

 $r_{obs} = 1.77 \cdot 10^{-5} mol/(gcat \cdot s), \ \rho_{cat} = 2.65 \cdot 10^{6} g/m^{3}, \ R = 4.20 \cdot 10^{-4} m, \ n=1, \ k_{c} = 0.214$

 $m/s, C= 0.370 \text{ mol/m}^3$

$$\frac{r_{obs} \cdot \rho_{cat} \cdot R \cdot n}{k_c \cdot C} = 2.48 \cdot 10^{-3} < 0.15$$

Weisz-Prater criterion for Internal Diffusion Limitations

Internal diffusion are negligible if $\Psi = \frac{n+1}{2} \cdot \frac{r_{obs} \cdot \rho_{cat} \cdot R^2}{D \cdot C} < 1$

n- reaction order

 r_{obs} - measured reaction rate, mol/($g_{cat} \cdot s$)

 ρ_{cat} - catalyst density, g/m³

R- catalyst pellet radius, m

D- diffusion coefficient, m²/s

C- bulk concentration

For propane dehydrogenation at 550°C for the most active catalyst 2Pt/SiO₂:

n=1,
$$r_{obs} = 1.77 \cdot 10^{-5} mol/(gcat \cdot s)$$
, $\rho_{cat} = 2.65 \cdot 10^{6} g/m^{3}$, R = 4.20 \cdot 10^{-4} m, D=1
\cdot 10^{-4} m, C= 0.370 mol/m^{3}

$$\Psi = \frac{n+1}{2} \cdot \frac{r_{obs} \cdot \rho_{cat} \cdot R^2}{D \cdot C} = 0.223 < 1$$

Mears Criterion for External Heat Transfer Limitations

External heat transfers are negligible if
$$\frac{r_{obs} \cdot \rho_{cat} \cdot R \cdot E_a \cdot \Delta H}{k_g \cdot R_g \cdot T^2} < 0.15$$

 r_{obs} - measured reaction rate, mol/($g_{cat} \cdot s$)
 ρ_{cat} - catalyst density, g/m³
R- catalyst pellet radius, m
 E_a - activation energy, J/mol
 Δ H- reaction heat, J/mol
 k_g - heat transport coefficient, J/($m^2 \cdot s \cdot K$)

- R_g gas constant, J/(mol·K)
- T reaction temperature, K

For propane dehydrogenation at 550°C for the most active catalyst 2Pt/SiO₂:

 $r_{obs} = 1.77 \cdot 10^{-5} \text{ mol}/(\text{gcat} \cdot \text{s}), \ \rho_{cat} = 2.65 \cdot 10^{6} \text{ g/m}^{3}, \ R = 4.20 \cdot 10^{-4} \text{ m}, \ E_{a} = 1.20 \cdot 10^{5}$ J/mol, $\Delta H = 1.29 \cdot 10^{5}$ J/mol, $k_{g} = 1.46 \cdot 10^{3}$ J/(m²·s·K), $R_{g} = 8.31$ J/(mol·K), T=823 K

$$\frac{r_{obs} \cdot \rho_{cat} \cdot R \cdot E_a \cdot \Delta H}{k_g \cdot R_g \cdot T^2} = 3.71 \cdot 10^{-2} < 0.15$$

Figure S1. Pt L3 edge EXAFS spectra FEFF calculation: A) R space FT magnitude, B) k space, C) R space FT real part and D) R space FT imaginary part. Pt-Pt at R=2.75 Å (black), Pt-Bi at R=2.75 Å (red), Pt-Bi at R=2.80 Å (blue).

Figure S2. STEM HAADF images of A) 2Bi-2Pt/SiO₂ (2.7±0.5 nm), B) 4Bi-2Pt/SiO₂ (2.3±0.5 nm), C) 2Pt/SiO₂ (2.2±0.4 nm), D) 1Bi-2Pt/SiO₂ (2.7±0.4 nm)

Figure S3. Particle size distribution statistics of A) $2Pt/SiO_2$ (2.2±0.6 nm), B) 1Bi-2Pt/SiO₂ (2.7±0.5 nm) C) $2Bi-2Pt/SiO_2$ (2.4±0.5 nm), D) $4Bi-2Pt/SiO_2$ (2.3±0.5 nm)

Figure S4. CO FTIR analysis of BiPt Bimetallic catalyst; CO adsorption before H₂ reduction: (A) 0.8Bi1Pt/ZSM-5, (B) 1Bi2Pt/SiO₂; CO adsorption after H₂ reduction: (C) 0.8Bi1Pt/ZSM-5, (D) 1Bi2Pt/SiO₂

Figure S5. EXAFS comparison between 2B1-2Pt/S1O₂ and 0.8B1-1Pt/ZSM-5 (A) k²-weighted χ (k) for 2Bi-2Pt/SiO₂ (black) and 0.8Bi-1Pt/ZSM-5 (red) (B) k²-weighted Fourier transformation magnitude (dashed lines) and imaginary part (solid lines) of the EXAFS spectra for 2Bi-2Pt/SiO₂ (black) and 0.8Bi-1Pt/ZSM-5 (red)

Figure S6. Simulated XRD patterns (A) XRD patterns of Pt-Bi bulk alloys and experimental Pt-Bi/SiO₂ taken at 550 °C (X-ray energy=105.715 keV). Pt₁Bi₁ simulation (black, ICSD:9008911), Pt₁Bi₂ simulation (navy, ICSD:9012345) (B) XRD patterns of simulated tetragonal Pt₁Bi₁ (AuCu structure type) and experimental Pt-Bi/SiO₂ taken at 550 °C (X-ray energy=105.715 keV). Tetragonal Pt₁Bi₁ simulation (purple, Pt-Pt bond distance=2.74 Å, Pt-Bi bond distance= 2.81 Å), Pt/SiO₂ (olive), 1Bi-2Pt/SiO₂ (red), 2Bi-2Pt/SiO₂ (blue), 4Bi-2Pt/SiO₂ (magneta).

Figure S7. The extracted profile of Pt M and Bi M concentration across single PtBi bimetallic nanoparticle as show inset.

Sample Name	XANES edge energy (keV)
2Pt/SiO ₂	11.5640
1Bi-2Pt/SiO ₂	11.5646
2Bi-2Pt/SiO ₂	11.5647
4Bi-2Pt/SiO ₂	11.5648
1Pt/ZSM-5	11.5640
0.1Bi-1Pt/ZSM-5	11.5641
0.8Bi-1Pt/ZSM-5	11.5646
1Bi-1Pt/ZSM-5	11.5646

 Table S1. XANES edge energy for the catalysts

Table S2. Peaks of the XRD spectra taken at 550°C

Sample Name	(111) peak (°)	(200) peak (°)	(220) peak (°)	(311) peak (°)
2Pt/SiO ₂	2.980	3.430	4.881	5.712
1Bi-2Pt/SiO ₂	2.959	3.404	4.861	5.680
2Bi-2Pt/SiO ₂	2.942	3.378	4.835	5.650
4Bi-2Pt/SiO ₂	2.937	-	-	-