Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Ni-doped CuS as an Efficient Electrocatalyst for Oxygen Evolution Reaction

Joyjit Kundu, Santimoy Khilari, Kousik Bhunia, and Debabrata Pradhan*

Materials Science Centre, Indian Institute of Technology, Kharagpur, W. B. 721 302, India

Corresponding Author

*E-mail: deb@matsc.iitkgp.ernet.in

Figure S1. (a) XRD pattern and (b) FESEM image of sample prepared with without ethylenediamine.

Catalyst	Electrolyte	Enhanc	Overpotential	Tafel slope	Ref
		er	(V) @10 mA/	(mV/dec)	
			cm ²		
Cu ₂ S NPs	250 mM phosphate	Glycin	0.428	63	1
	buffer, pH = 13				
CuS NPs	250 mM phosphate	Glycin	0.586	82	1
	buffer, pH = 13				
Cu ₂ S NPs	0.25 M phosphate	-	0.401	52	2
	buffer ($pH = 13$)				
Co-doped Cu ₇ S ₄	1 M KOH	-	0.270	130	3
Cu ₂ S nanosheets	1.0 M KOH	-	0.336@20	101	4
			mA/cm ²		
CuS _{0.55} hollow	1.0 M KOH	-	0.386@100	33	5
NPs			mA/cm ²		
CuS Nanosheets	1.0 M KOH	-	0.408	130	6
Co ₉ S ₈ -CuS-FeS	1.0 M KOH	-	0.30	79	7
CuS/NiS ₂	0.1 M KOH	-	0.29	36	8
3% Ni-doped CuS	0.5 M KOH	-	0.39	96.8	This
					work

Table S1. Comparison on the OER performance of reported electrocatalysts

Figure S2. Mott–Schottky plots of pristine CuS, Ni-doped CuS, and IrO₂in 0.5(M) KOH at 1000 Hz.

Figure S3. Chronopotentiometry plot of CuS, 1% Ni-doped CuS, 3% Ni-doped CuS and IrO₂.

Figure S4. Equivalent circuit diagram of Nyquist plot.

References

(1) L. An, P. Zhou, J. Yin, H. Liu, F. Chen, H. Liu, Y. Du and P. Xi, Phase Transformation Fabrication of a Cu_2S Nanoplate as an Efficient Catalyst for Water Oxidation with Glycine, *Inorg. Chem.*, 2015, **54**, 3281–3289.

(2) X. Zhao, L. Liu, Y. Zhang, H. Zhang and Y. Wang, Uniquely Confining Cu₂S Nanoparticles in Graphitized Carbon Fibers for Enhanced Oxygen Evolution Reaction, *Nanotechnology*, 2017, **28**, 345402.

(3) Q. Li, X. Wang, K. Tang, M. Wang, C. Wang and C. Yan, Electronic Modulation of Electrocatalytically Active Center of Cu_7S_4 Nanodisks by Cobalt Doping for Highly Efficient Oxygen Evolution Reaction, *ACS Nano*, 2017, **11**, 12230–12239.

(4) L. He, D. Zhou, Y. Lin, R. Ge, X. Hou, X. Sun and C. Zheng, Ultrarapid in situ Synthesis of Cu₂S Nanosheet Arrays on Copper Foam with Room-Temperature-Active Iodine Plasma for Efficient and Cost-Effective Oxygen Evolution, *ACS Catal.*, 2018, **8**, 3859–3864.

(5) H. Zhang, H. Jiang, Q. Xu, Y. Hu and C. Li, Rapid Low-temperature Synthesis of Hollow $CuS_{0.55}$ Nanoparticles for Efficient Electrocatalytic Water Oxidation, *Chem. Eng. J.*, doi.org/10.1016/j.ces.2018.10.011.

(6) H. Liang, W. Shuang, Y. Zhang, S. Chao, H. Han, X. Wang, H. Zhang and L. Yang, Graphene-Like Multilayered CuS Nanosheets Assembled into Flower-Like Microspheres and Their Electrocatalytic Oxygen Evolution Properties, *ChemElectroChem*, 2018, **5**, 494–500.

(7) S. Zhang, Y. Sun, F. Liao, Y. Shen, H. Shi and M. Shao, Co₉S₈-CuS-FeS Trimetal Sulfides for Excellent Oxygen Evolution Reaction Electrocatalysis, *Electrochim. Acta*, 2018, **283**, 1695–1701.

(8) L. An, Y. Li, M. Luo, J. Yin, Y.-Q. Zhao, C. Xu, F. Cheng, Y. Yang, P. Xi and S. Guo, Atomic-Level Coupled Interfaces and Lattice Distortion on CuS/NiS₂ Nanocrystals Boost Oxygen Catalysis for Flexible Zn-Air Batteries, *Adv. Funct. Mater.*, 2017, **27**, 1703779.