Electronic Supplementary Information

New insights on the valorisation of glycerol over MgO catalysts in the gasphase.

Louise Smith^a, Paul J. Smith^a, Karl S. Mugford^a, Mark Douthwaite^a, Nicholas F. Dummer^a*, David J. Willock^a, Mark Howard^a, David W. Knight^a, Stuart H. Taylor^a and Graham J. Hutchings^a*.

^a Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT UK

*Corresponding authors: <u>dummernf@cardiff.ac.uk</u> and <u>hutch@cardiff.ac.uk</u>

Page	Description
S2	Table S1. Product list from GC analysis.
S3	Table S2a. Catalyst free product list without SiC.
S4	Table S2b. Catalyst free product list with SiC.
S5	Table S3. Product lists over MgO at different temperatures.
S6	Table S4. Influence of GHSV over MgO catalysts on the glycerol conversion and product selectivity.
S7	Table S5. Product lists over MgO at 400 °C with different wt. % glycerol feed-stocks.
S8	Table S6. Product lists over MgO at 400 °C as a function of reaction time.
S9	Table S7. Crystallite sizes for the fresh and used MgO catalyst.
S10	Table S8. The total carbon content observed in a reaction over MgO for 6 h.
S11	Fig. S1. Potential routes to several products identified with commercial standards according to their retention time in GC1.
S12	Fig. S2. TGA of the MgO catalyst after 135 minutes of reaction; the time taken for the reaction to reach steady-state.
S13	Fig. S3. LC-MS chromatogram corresponding to the post reaction solution of a reaction run over MgO for 6 h.

Glycerol to MeOH: Analysis conditions; *GC1* Varian CP 3800 gas chromatograph equipped with a capillary column (ZB-Wax plus, 30 m x 0.53 mm x 1 μ m). The injector port was maintained at 250 °C and a split-less injection was used. The initial column temperature (40 °C) was held for 2 mins, then ramped (20 °C min⁻¹) to 60 °C where it was held for 2 minutes before ramping to 220 °C (20 °C min⁻¹) and holding for 15 minutes. Products were analysed by an FID maintained at 300 °C. *GC2* Varian 450 gas chromatograph equipped with a capillary column (CP-SiI5CB, 50 m x 0.32 mm x 5 μ m). The injector port was maintained at 200 °C and a 20:1 split ratio used. The initial column temperature (35 °C) was held for 15 minutes. Products were analysed by an FID maintained at 300 °C. GC3 Varian CP3380 gas chromatograph equipped with a capillary column. The injector bort was maintained at 200 °C min⁻¹) to 100 °C where it was held for 3 minutes. Products were analysed by an FID with a methanizer, held at 200 °C and 350 °C respectively. *GC3* Varian CP3380 gas chromatograph equipped with a Porapak Q column. The injector was held at 50 °C; the column was maintained at 30 °C for 15 minutes. Products were analysed by a TCD, with the filament maintained at 200 °C.

Table 51 Froduct list from de analysis				
Product		Retention time		
	GC1	GC2	GC3	
Acetaldehyde	1.907			
Propionaldehyde	2.387			
Acetone	2.60			
Acrolein	2.840			
Butyraldehyde	3.133			
Methanol	3.48			
2-propanol	3.907			
Ethanol	4.013			
2,3-butanedione	4.547			
2-butanol	5.56			
1-propanol	5.800			
3-hexanone	5.907			
2-hexanone	6.360			
2-methyl-1-propanol	6.680			
Allyl alcohol	7.053			
Cyclopentanone	8.013			
Hydroxyacetone	9.373			
3-ethoxy-1-propanol	9.987			
Acetic acid	10.547			
Glycidol	10.790			
Propionic acid	11.240			
1,2-propanediol	11.747			
Ethylene glycol	12.013			
1,3-propanediol	13.080			
Phenol	14.760			
Glycerol	18.787			
со		5.02		
CH ₄		5.12		
CO ₂		5.38		
H ₂			2.222	
O ₂			2.902	

Table S1 Product list from GC analysis

Table S2a. Catalyst free product list without SiC.			
	<u>320 °C</u>	<u>400 °C</u>	<u>480 °C</u>
<u>Product</u>	<u>Selectivity (%)</u>		
acetaldehyde	0.00	3.9	6.4
propionaldehyde	0.00	0.5	0.7
acetone	0.00	0.4	0.7
acrolein	0.00	2.7	2.8
methanol	0.00	2.5	4.9
ethanol	0.00	0.0	0.4
2,3-butanedione	0.00	0.0	0.7
1-propanol	0.00	0.0	0.1
3-hexanone	0.00	0.0	0.2
allyl alcohol	0.00	16.2	17.6
cyclopentanone	0.00	0.0	0.2
hydroxyacetone	0.00	30.9	26.6
acetic acid	0.00	1.1	1.7
propionic acid	0.00	1.3	2.7
1,2-propanediol	0.00	3.1	3.4
unknown(s)	0.00	22.0	19.4
ethylene glycol	0.00	4.3	8.3
1,3-propanediol	0.00	1.6	0.9
CO	0.00	0.7	0.8
CO ₂	0.00	2.3	1.5
CH ₄	0.00	0.4	0.1

Table S2b. Catalyst free product list with SiC.				
	<u>320 °C</u>	<u>360 °C</u>	<u>400 °C</u>	<u>480 °C</u>
Product				
acetaldehyde	0.0	4.0	5.2	12.9
propionaldehyde	0.0	0.0	0.3	0.8
acetone	0.0	0.4	0.4	0.7
acrolein	0.0	1.7	2.3	7.0
butyraldehyde	0.0	0.0	0.0	0.1
methanol	0.0	0.6	1.8	2.1
ethanol	0.0	0.0	0.3	0.5
2,3-butanedione	0.0	0.0	0.5	0.5
1-propanol	0.0	0.0	0.0	0.2
3-hexanone	0.0	0.0	0.1	0.1
2-hexanone	0.0	0.0	0.0	0.3
allyl alcohol	43.1	34.7	30.4	22.3
cyclopentanone	0.0	0.0	0.0	0.1
hydroxyacetone	56.9	37.3	33.5	23.3
3-ethoxy-1- propanol	0.0	0.0	0.3	0.2
acetic acid	0.0	2.5	2.0	1.3
propionic acid	0.0	1.5	1.9	1.1
1,2-propanediol	0.0	1.9	2.0	4.2
unknown(s)	0.0	5.7	9.2	10.3
ethylene glycol	0.0	2.3	3.2	5.9
1,3-propanediol	0.0	1.0	1.0	1.3
phenol	0.0	0.0	0.0	0.3
СО	0.0	0.7	0.7	0.6
CH ₄	0.0	0.4	0.1	0.1
CO ₂	0.0	3.9	3.3	1.3

Table S3. Product lists over MgO at different temperatures.			
	<u>360 °C</u>	<u>400 °C</u>	<u>440 °C</u>
<u>Product</u>		Selectivity (%)	
acetaldehyde	9.1	13.3	17.0
propionaldehyde	0.7	1.6	3.0
acetone	0.2	0.4	0.6
acrolein	1.3	1.7	3.2
butyraldehyde	0.0	0.1	0.1
methanol	23.4	27.9	25.6
2-propanol	0.1	0.1	0.1
ethanol	1.0	1.5	1.6
2,3-butanedione	1.7	1.9	1.9
2-butanol	0.0	0.1	0.1
1-propanol	0.1	0.3	0.3
3-hexanone	0.2	0.2	0.2
2-hexanone	0.1	0.0	0.0
2-methyl-1- propanol	0.0	0.1	0.0
allyl alcohol	1.0	1.6	2.3
cyclopentanone	0.1	0.4	1.0
hydroxyacetone	25.9	17.9	15.5
3-ethoxy-1- propanol	0.5	0.9	1.3
acetic acid	1.7	2.0	2.0
propionic acid	0.4	0.6	0.7
1,2-propanediol	2.4	1.3	0.9
unknown(s)	10.8	9.5	8.0
ethylene glycol	10.9	5.8	2.5
1,3-propanediol	1.2	0.8	0.5
phenol	0.1	0.2	0.3
CO	3.8	3.9	5.8
CH ₄	0.0	2.3	0.4
CO ₂	3.3	3.8	5.3

Table S4. Influence of GHSV over MgO catalysts on the glycerol conversion and product selectivity. 0.5 g MgO at 400 °C			
	<u>2300 h⁻¹</u>	<u>4615 h⁻¹</u>	<u>6920 h⁻¹</u>
Glycerol			
Conversion (%)	<u>99.9</u>	<u>89.9</u>	<u>73.8</u>
<u>Product</u>	Selectivity (%)		
acetaldehyde	18.7	13.3	11.0
acetone	5.3	0.4	0.3
methanol	26.8	27.9	13.0
hydroxyacetone	11.5	17.9	32.7
1,2-propanediol	1.3	1.3	6.6

Table S5. Product lists over MgO at 400 °C with different wt. % glycerol feed-stocks.					
	10 wt. % (1.8) ^a	<u>10 wt. %^b (0.3)</u>	20 wt. % (0.8)	40 wt. % (0.4)	50 wt. % (0.3)
<u>Product</u>	Product Selectivity (%)				
acetaldehyde	18.0	14.6	18.0	17.2	13.3
propionaldehyde	3.8	0.5	3.5	2.1	1.6
acetone	1.0	0.6	0.9	0.4	0.4
acrolein	2.2	2.3	2.5	2.9	1.7
butyraldehyde	0.2	0.0	0.2	0.1	0.1
methanol	34.9	31.6	32.0	29.5	27.9
2-propanol	0.0	0.0	0.1	0.1	0.1
ethanol	3.2	1.2	2.6	1.9	1.5
2,3-butanedione	2.6	0.7	2.3	1.9	1.9
2-butanol	0.1	0.0	0.1	0.1	0.1
1-propanol	0.7	0.0	0.6	0.3	0.3
3-hexanone	0.4	0.1	0.3	0.2	0.2
2-hexanone	0.0	0.0	0.0	0.0	0.0
2-methyl-1- propanol	0.0	0.0	0.0	0.0	0.1
allyl alcohol	2.2	6.2	2.1	2.0	1.6
cyclopentanone	2.2	0.3	1.6	1.0	0.4
hydroxyacetone	3.6	18.7	6.4	14.8	17.9
3-ethoxy-1- propanol	1.7	0.9	1.5	1.1	0.9
acetic acid	0.7	0.8	1.4	1.5	2.0
propionic acid	0.5	0.4	0.8	0.6	0.6
1,2-propanediol	0.2	1.5	0.3	0.8	1.3
unknown(s)	10.1	8.8	10.6	9.6	9.5
ethylene glycol	0.2	7.0	1.0	2.5	5.8
1,3-propanediol	0.3	0.1	0.2	0.5	0.8
phenol	1.3	0.3	0.1	0.3	0.2
СО	3.5	1.5	3.9	4.2	3.9
CH ₄	0.2	0.0	0.4	0.9	2.3
CO ₂	6.6	1.9	6.8	3.7	3.8
$\frac{1}{2}$ values in parenthesis represent the satelyst to glycorol ration $(g/g) \downarrow 100$ mg satelyst used					

 $^{\rm a}$ values in parenthesis represent the catalyst to glycerol ration (g/g); $^{\rm b}$ 100 mg catalyst used.

Table S6. Product lists over MgO at 400 °C as a function of reaction time.					
	<u>2 h</u>	<u>4 h</u>	<u>6h</u>	<u>24 h</u>	<u>48 h</u>
Product					
acetaldehyde	18.2	14.7	14.8	12.8	14.6
propionaldehyde	2.9	2.1	2.0	1.8	2.1
acetone	0.7	0.5	0.7	0.6	0.5
acrolein	2.4	2.3	2.3	2.0	2.4
butyraldehyde	0.1	0.1	0.1	0.1	0.1
methanol	32.2	27.8	26.9	29.7	26.9
2-propanol	0.0	0.0	0.0	0.0	0.1
ethanol	2.1	1.5	1.5	1.2	1.2
2,3-butanedione	2.7	2.6	2.6	2.3	2.5
2-butanol	0.1	0.1	0.1	0.1	0.1
1-propanol	0.4	0.3	0.3	0.2	0.2
3-hexanone	0.4	0.3	0.3	0.3	0.3
2-hexanone	0.0	0.0	0.0	0.0	0.0
2-methyl-1- propanol	0.0	0.0	0.0	0.0	0.0
allyl alcohol	1.7	1.4	1.4	1.2	1.3
cyclopentanone	0.8	0.6	0.5	0.4	0.4
hydroxyacetone	10.6	17.6	17.3	18.1	19.7
3-ethoxy-1- propanol	1.6	1.4	1.4	1.3	1.3
acetic acid	1.4	2.1	1.8	1.7	1.7
propionic acid	0.6	0.7	0.6	0.6	0.6
1,2-propanediol	0.7	1.4	1.6	1.5	1.5
unknown(s)	7.7	10.5	10.0	10.3	10.1
ethylene glycol	1.4	3.7	4.6	4.5	4.3
1,3-propanediol	0.3	0.3	0.3	0.3	0.3
phenol	0.5	0.0	0.4	0.4	0.4
СО	4.4	3.7	3.9	4.0	3.5
CH ₄	0.3	0.2	0.2	0.2	0.2
CO ₂	5.8	4.3	4.5	4.3	3.9

Table S7. Crystallite size of fresh and us	Table S7. Crystallite size of fresh and used pelleted MgO catalyst, estimated by		
applying the Scherrer equation to the MgO(200) reflection in the corresponding			
XRD patterns (Fig. 6).			
The used MgO corresponds to the MgO cain H_2O for 3 h at 400 °C.	atalyst after reaction with 50 wt.% glycerol		
Pelleted Catalyst	Crystallite Size (Å)		
Fresh MgO 94			
Used MgO	89		

Table S8. The total carbon content observed in a reaction over MgO for 6 h.

Reaction conditions; 400 °C, glycerol flow (0.016 mL/min), 0.5 g MgO, 50 mL/min Ar. Total carbon content was normalised against the total carbon content observed by CHN analysis in the starting glycerol solution. *Coking calculated from the mass loss observed by TGA of the post reaction catalyst.

Catalytic Coking*	5.5
CO _x	11.7
CHN Analysis	76.8
Total Carbon Content	94.0

Fig. S1. Potential routes to several products identified with commercial standards according to their retention time in GC1. (a) Formation of acetic and propionic acids from acetaldehyde and hydroxyacetone respectively.¹ (b) Formation of acetone, and 1- and 2-propanol from glycerol. (c) Formation of 2-butanol *via* a radical mechanism or via hydrogenation of 2,3-butanedione and formation of 3-ethoxy-1-propanol *via* ethanol addition to acrolein. 1. A. Corma *et al., J. Catal.,* 2008, 257, 163–171.

Fig. S2. Thermal gravimetric analysis of an MgO sample following the 135 minutes taken to reach steady glycerol flow over the catalyst bed prior to a reaction (such as Table 4 entry 5). Reaction conditions; 400 °C, glycerol flow (0.016 mL/min), 0.5 g MgO, 50 mL/min Ar.

Fig. S3. LC-MS chromatogram corresponding to the post reaction solution of a reaction run over MgO for 6 h. Detection parameters are fixed at 100 - 1000 m/z. Reaction conditions; 400 °C, glycerol flow (0.016 mL/min), 0.5 g MgO, 50 mL/min Ar. Blue line – chromatogram of the post reaction solution. Red line – chromatogram of a H_2O blank solution.