Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Electro-oxidation Competency of Palladium Nanocatalysts over Ceria-Carbon Composite Support during Alkaline Ethylene Glycol Oxidation

Sasidharan Sankar^{†,‡}, Naoto Watanabe[†], Gopinathan M. Anilkumar^{§,‡}, Balagopal N. Nair[§], Sailaja G. Sivakamiammal[±], Takanori Tamaki^{†,‡}, Takeo Yamaguchi^{†,‡*}

[†] Laboratory for Chemistry and Life Sciences, Tokyo Institute of Technology, R1-17, 4259 Nagatsuta, Midori-ku, Yokohama 226-850 *E-mail: yamag@res.titech.ac.jp

[‡] Core Research for Evolutionary Science and Technology, Japan Science and Technology Agency (JST-CREST), Japan 102-0076

§ R&D Centre, Noritake Co., Ltd., 300 Higashiyama, Miyochi-cho, Miyoshi, Japan 470-0293

[±] Cochin University of Science and Technology, Kochi, India 682022

Table S1. Thermal decomposition data obtained from TGA and the corresponding Pd metal content calculated using ICP

	Final metal content from TGA (wt%)	Pd content (from ICP) (wt %)	CeO ₂ content (wt%)
Pd/ C- CeO ₂ (1:0)	36	36	0
Pd/ C-CeO ₂ (1:0.5)	42	24	18
Pd/ C-CeO ₂ (1:1)	50	27	23
Pd/ C-CeO ₂ (1:2)	58	20	38

Figure S1 *HR-TEM EDS mapping of Pd/C-CeO*₂ (1:1) catalyst and the corresponding EDS spectra recorded

Figure S2 *HR-TEM image of a) Pd/C showing the morphology and size b) C-CeO2 (1:1) composite support*

Figure S3 *HR-Transmission electron micrograph of A) Pd/C-CeO*₂ (1:1.5) *and B) Pd/C-CeO*₂ (1:2)

Figure S4 *XPS spectra of Pd/C-CeO*₂ (1:1) *catalyst showing the binding energies corresponding to Pd and Ce.*

Figure S5 a) *CV forward and backward profiles during Alkaline EGOR for prepared catalysts and* **b)** *EGOR with varying concentration for Pd/C-CeO2 (1:1) catalysts*

Figure S6) CV profiles during various cycles of cyclic stability test for Pd/C-CeO2 (1:1) catalyst

Further, the electrochemical behavior of the catalysts in 0.1M KOH solution the and corresponding EGOR activity was carried out. Pd/C-CeO₂ shows improved EGOR performance compared to Pd/C with negative onset potential and higher current density.

Figure S7) *CV* profiles recorded for Pd/C and Pd/C- CeO_2 samples a) in N_2 saturated 0.1M KOH and b) EGOR activity in N_2 saturated 0.1M KOH+0.5M EG