Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

The role of weak Lewis acid sites for methanol thiolation

Manuel Weber-Stockbauer,^a Oliver Y. Gutiérrez^{a,c}, Ricardo Bermejo-Deval,^{a*} Johannes A. Lercher^{a,b*}

^aTechnische Universität München, Department of Chemistry, Catalysis Research Center, Lichtenbergstraße 4, 85748 Garching (Germany)

^bInstitute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA.

^cPresent address: Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States

> * Corresponding authors. Fax: +49 89 28913544. ricardo.bermejo@tum.de (R. Bermejo-Deval) johannes.lercher@ch.tum.de (J.A. Lercher)

S.1. Characterization

Figure S1 X-ray diffraction after sulfidation of a) Cs_2WS_4 /Al₂O₃, b) CsW/Al_2O_3 , c) Cs/Al_2O_3 and d) γ -Al₂O₃. The symbols are represented as: * as Cs_2WS_4 , § as WS_2 and x as γ -Al₂O₃.

Table S1 Raman shifts and assignments from the different sulfur anions.

Anion	Raman Shift (cm ⁻¹)	Assignment
Sulfite (SO_3^{-2})	496	(E) Antisymmetric SO ₃ deformation
Sulfite (SO_3^{-2})	647	(A_1) Symmetric SO ₃ deformation
Sulfite (SO_3^{-2})	986	(E) Antisymmetric SO ₃ stretching
Thiosulfate $(S_2O_3^{-2})$	323	(E) Symmetric S-S-O deformation
Thiosulfate $(S_2O_3^{-2})$	452	(A_1) Symmetric SO ₃ deformation
Thiosulfate $(S_2O_3^{-2})$	656	(A ₁) Symmetric S-SO ₃ stretching
Thiosulfate $(S_2O_3^{-2})$	1016	(A ₁) Symmetric SO ₃ stretching
Dithionate $(S_2O_6^{-2})$	204	(E _u) Symmetric SO ₃ deformation
Dithionate $(S_2O_6^{-2})$	1000	(A _{2u}) Symmetric stretching
Pyrolsulfite $(S_2O_5^{-2})$	660	(A_1) Symmetric SO ₃ deformation
Pyrolsulfite $(S_2O_5^{-2})$	1050	(A ₁) Symmetric SO ₃ stretching
Dithionite $(S_2O_4^{-2})$	508	

1)
$$CO_3^{-2} + 2H_2O + H_2S$$
 $SO_3^{-2} + CO_2 + 3H_2$ $K_{eq} = 6.76 \cdot 10^{-9}$ 2) $SO_3^{-2} + H_2O$ $SO_4^{-2} + H_2$ $K_{eq} = 4.88 \cdot 10^{-2}$ 3) $SO_3^{-2} + H_2S$ $S_2O_3^{-2} + H_2$ $K_{eq} = 1.64$ 4) $O^{-2} + H_2S$ $S^{-2} + H_2O$ $K_{eq} = 2.34 \cdot 10^{18}$

Figure S2. Plausible reactions yielding sulfur oxyanions and the corresponding equilibrium constants at 400 °C and 1 atm. The equilibrium constants were calculated with the HSC-chemistry software. The decomposition of CO_3^{-2} into SO_3^{-2} and CO_2 would be driven, under flow conditions, by the continuous removal of CO_2 and H_2 from the system pushing the equilibrium towards the product side.

Figure S3. Infrared spectroscopy after sulfidation of a) Cs_2WS_4/Al_2O_3 , b) CsW/Al_2O_3 and c) Cs/Al_2O_3 . The symbols are represented by anions: thiosulfate (blue square), dithionate (black diamond), pyrosulfite (orange dot), pyrosulfate (red triangle) and sulfite (green triangle).

T 11 CA	T C 1	1 1	1 · ,	C /1	1.00	10 .
Toble V1	Introrod	honda one	0 0 0 1 0 m m 0 m t 0	trom the	a dittarant	aultur oniona
Lane SZ	пппатес	Danus and		11()111 1116	- annerenn	SHITTIN ATTIONS
	muuuvu	oundo une	4 WOOLZINGING	II OIII tIIt		ballal amono.
			0			

Anion	IR band (cm ⁻¹)	Assignment
Sulfite (SO ₃ - ²)	968	(A ₁) Symmetric SO ₃ stretching
Thiosulfate $(S_2O_3^{-2})$	1146	(E) Antisymmetric SO ₃ stretching
Dithionate $(S_2O_6^{-2})$	1000	(A _{2u}) Symmetric stretching
Pyrolsulfite $(S_2O_5^{-2})$	970	(A ₂) Symmetric SO ₂ stretching
Pyrolsulfite $(S_2O_5^{-2})$	1196	(A ₂) Symmetric SO ₃ stretching
Pyrosulfate $(S_2O_7^{-2})$	1380	
Pyrosulfate $(S_2O_7^{-2})$	1450	

Figure S4 Raman spectra of the same Cs_2WS_4/Al_2O_3 sample after (A) and before reaction (B). The symbols (*) and (§) are assigned to the WS_4^{-2} and WS_2 phases.

Figure S5 IR Spectra of methanol adsorbed on CsW/Al₂O₃ (previously sulfided) at a) 0.1 mbar and 50 °C, b) 1 mbar and 50 °C, c) 1 mbar and 100 °C, d) 1 mbar and 150 °C, e) 10⁻⁵ mbar and 300 °C.

Figure S6 IR Spectra of methanol adsorbed on Cs/Al₂O₃ (previously sulfide) at a) 0.1 mbar and 50 °C, b) 1 mbar and 50 °C, c) 1 mbar and 100 °C, d) 1 mbar and 150 °C, e) 1 mbar and 200 °C, e) 1 mbar and 250 °C and e) 1 mbar and 300 °C.

Figure S7 IR Spectra of methanol adsorbed on γ-Al₂O₃ (previously sulfided) at a) 0.1 mbar and 50 °C, b) 1 mbar and 50 °C, c) 1 mbar and 100 °C, d) 1 mbar and 150 °C, e) 1 mbar and 200 °C, e) 1 mbar and 250 °C and e) 1 mbar and 300 °C.

S.2 Catalytic Testing and Kinetic Data

Figure S8 Dimethyl ether rate formation for Cs_2WS_4/Al_2O_3 , CsW/Al_2O_3 , Cs/Al_2O_3 and γ -Al_2O_3, in between 300-360 °C.

Figure S9 Dimethyl sulfide rate formation for Cs_2WS_4/Al_2O_3 , CsW/Al_2O_3 , Cs/Al_2O_3 and γ -Al_2O_3, in between 300-360 °C.

Figure S10 Dimethyl disulfide rate formation for Cs_2WS_4/Al_2O_3 , CsW/Al_2O_3 , Cs/Al_2O_3 and γ -Al_2O_3, in between 300-360 °C.

Figure S11 Methane rate formation for Cs_2WS_4/Al_2O_3 , CsW/Al_2O_3 , Cs/Al_2O_3 and γ -Al_2O_3, in between 300-360 °C.

Figure S12 Left: Plot of ln rates of dimethyl ether production (Ln r_{DME}) along with ln of partial pressure of methanol (C_{CH3OH}, empty squares) or H₂S (P_{H2S}, filled squares) with Al₂O₃ catalyst at 300°C and 9 bar. Right: Plot of ln rates of methanethiol production (Ln r_{CH3SH}) along with ln of partial pressure of methanol (C_{CH3OH}, empty squares) or H₂S (P_{H2S}, filled squares) with Al₂O₃ catalyst at 300°C and 9 bar.

Figure S13 Plot of ln rates of methanethiol production (Ln r_{CH3SH}) along with ln of partial pressure of methanol (C_{CH3OH} , empty squares) or H₂S (P_{H2S} , filled squares) with Cs/Al₂O₃ catalyst at 300°C and 9 bar.

Figure S14 Methanol conversion and product yields during reaction of methanol and H_2S over Cs/SiO_2 at 360 and 340 °C under same conditions as catalytic tests.

S.3 Derivation of bimolecular rate equations for the formation of dimethyl ether and methanethiol

The following reaction steps describe the formation of dimethyl ether (CH₃OCH₃) and methanethiol (CH₃SH):

(1)
$$CH_3OH(g) + O^* \longrightarrow CH_3O^* + OH$$
 $K_1 = [CH_3O^*]^2/([CH_3OH] \cdot [O^*])$
(2) $CH_3OH(g) + c \longrightarrow CH_3O^c + H$ $K_2 = [CH_3O^c]^2/([CH_3OH] \cdot [c^*])$
(3) $H_2S(g) + c \longrightarrow SH^c + H$ $K_3 = [SH^c]^2/([H_2S] \cdot [c^*])$
(4) $CH_3OH(g) + CH_3O^* \longrightarrow CH_3OCH_3(g) + OH^*$
(5) $CH_3O^c + SH^c \longrightarrow CH_3S^c + OH^c$
(6) $CH_3S^c + H \longrightarrow CH_3SH(g) + c$ $K_6 = [CH_3SH] \cdot [c^*]/([(CH_3S^c][H]))$
(7) $OH^c + H \longrightarrow H_2O(g) + c$ $K_7 = [H_2O] \cdot [c^*]/([OH^*]) \cdot [OH])$
(8) $OH + OH^* \longrightarrow H_2O(g) + O^*$ $K_8 = [H_2O] \cdot [O^*]/([OH^*]) \cdot [OH])$

Scheme S1 Reaction kinetic steps for the formation dimethyl ether (DME) and CH₃SH, being (O^{*}) the strong Lewis acid site and (^c) the strong basic site of the Lewis acid-base pairs. The synthesis of DME follows an Eley-Rideal bimolecular reaction while the synthesis of CH₃SH follows a Langmuir-Hinshelwood bimolecular reaction.

The Lewis acid-base pair (LABS) sites are taking part in the formation of the metoxy on a strong Lewis acid site and the alcoholate on a strong basic site. In both cases there is a dissociation of the methanol having both respective equal number on acid a base sites ([^c] or [^{*}]). Assuming the Most Abundant Reaction Intermediates (MARI) and vacant sites ([^c]) for strong Lewis acid sites:

$$[LABS^{c}] = [^{c}] + [CH_{3}O^{c}] + [SH^{c}] + [OH^{c}] + [CH_{3}S^{c}]$$

$$[LABS^{c}] = [^{c}] \cdot (1 + K_{2}^{0.5} \cdot [CH_{3}OH]^{0.5} + K_{3}^{0.5} \cdot [H_{2}S]^{0.5} + K_{6}^{-0.5} \cdot [CH_{3}S^{H}]^{0.5} + K_{7}^{-0.5} \cdot [H_{2}O]^{0.5})$$

Following the same rationale for the formation of dimethyl ether with strong Lewis acid sites:

$$[LABS^*] = [*] \cdot (1 + K_1^{0.5} \cdot [CH_3OH]^{0.5} + K_8^{-0.5} \cdot [H_2O]^{0.5})$$

Assuming reaction 3 and 4 (Scheme S1) are the rate determining steps in the formation of dimethyl ether and methanethiol, respectively, the rate expressions for these two products are the following:

$$r_{CH_3SH} = k_5 \cdot [CH_3O^c] \cdot [SH^c] = k_5 \cdot K_2^{0.5} \cdot K_3^{0.5} \cdot [CH_3OH]^{0.5} \cdot [H_2S]^{0.5} \cdot [^c]^2$$
$$r_{CH_3OCH_3} = k_4 \cdot [CH_3OH] \cdot [CH_3O^*] = k_4 \cdot K_1^{0.5} \cdot [CH_3OH]^{1.5} \cdot [^*]$$

Substituting the site balance gives:

$$r_{CH_{3}OCH_{3}} = \frac{k_{4}K_{1}^{0.5}[CH_{3}OH]^{1.5}}{1 + K_{1}^{0.5}[CH_{3}OH]^{0.5} + \frac{[H_{2}O]^{0.5}}{K_{8}^{0.5}}}[LABS *]$$

$$r_{CH_{3}SH} = \frac{k_{5}K_{2}^{0.5}K_{3}^{0.5}[CH_{3}OH]^{0.5}[H_{2}S]^{0.5}}{(1 + K_{2}^{0.5}[CH_{3}OH]^{0.5} + K_{3}^{0.5}[H_{2}S]^{0.5} + \frac{[CH_{3}SH]^{0.5}}{K_{6}^{0.5}} + \frac{[H_{2}O]^{0.5}}{K_{7}^{0.5}}}[LABS c]$$