Supplementary Information

Mn decorated Na/Fe catalysts for CO₂ hydrogenation to light olefins

Binglian Liang^{a,b}, Ting Sun^c, Junguo Ma^a, Hongmin Duan^a, Lin Li^a, Xiaoli Yang^a,

Yaru Zhang^a, Xiong Su^a, Yanqiang Huang^{a,*}, Tao Zhang^a

^a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese

Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.

^b University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049,

China.

^c College of Chemistry and Materials Science, Sichuan Normal University, Chengdu,

610068, China.

*Corresponding Author

Fax: (+) 86-411-84685940; Tel: (+) 86-411-84379416; E-mail: yqhuang@dicp.ac.cn

P(MPa)	X-CO ₂	S-CO	S-CH ₄	$S-C_2^{=}-C_4^{=}$	$S-C_2^0-C_4^0$	S-C ₅₊	O/P
3	38.6	11.7	11.8	30.2	4.0	42.1	7.5
2	34.5	17.1	9.9	29.5	3.0	40.0	9.8
1	32.0	22.5	6.8	27.2	2.3	40.7	12.1
0.5	28.8	32.2	6.4	25.6	2.2	33.0	11.7
0.1	23.4	70.7	4.4	13.0	1.2	9.3	11.3

Table S1 Catalytic performance of 5Mn-Na/Fe catalyst for CO₂ hydrogenation at different reaction pressure.

Reaction conditions: $H_2/CO_2 = 3$; 320 °C; 2040 mL h⁻¹ g_{cat}⁻¹; TOS = 10 h. O/P: The ratio of olefin to paraffin in the C₂–C₄ range hydrocarbons.

Table S2 Catalytic performance of $1Na/Fe_5C_2$ catalyst for CO_2 hydrogenation.

catalyst	X-CO ₂	S-CO	S-CH ₄	$S-C_2^{=}-C_4^{=}$	$S-C_2^0-C_4^0$	S-C ₅₊	O/P ^a
1Na/Fe ₅ C ₂	34.7	11.9	8.3	24.7	2.5	52.1	9.8

^a The ratio of olefin to paraffin in the C₂–C₄ range hydrocarbons. The catalyst was without H₂ pre-reduction and direct applied in CO₂ hydrogenation. Reaction conditions: H₂/CO₂ = 3; 320 °C; 3.0 MPa; 2040 mL h⁻¹ g_{cat}⁻¹.

Catalyst	Assignment	IS (mm s ⁻¹)	QS (mm s ⁻¹)	Line Widt h	Hhf (kOe)	Relative Abundance (%)
Fresh 1Na/Fe ₅ C ₂	$Fe_5C_2(I)$	0.16	0.14	0.48	177	37.8
	Fe ₅ C ₂ (II)	0.22	0.09	0.48	215	46.5
	Fe ₅ C ₂ (III)	0.15	0.14	0.39	110	15.6
Used 1Na/Fe ₅ C ₂	Fe ₃ O ₄ (A)	0.3	0	0.29	493	26.8
	$Fe_3O_4(B)$	0.66	0	0.35	461	50.0
	$Fe_5C_2(I)$	0.22	0.09	0.22	183	9.2
	Fe ₅ C ₂ (II)	0.15	0.14	0.58	214	9.3
	Fe ₅ C ₂ (III)	0.14	0.11	0.58	107	4.7

Table S3 Mössbauer parameters of the fresh and used 1Na/Fe $_5C_2$ catalysts.

Reaction conditions: $H_2/CO_2 = 3$; 320 °C; 3.0 MPa; 2040 mL h⁻¹ g_{cat}⁻¹; TOS = 10 h.

Y C₂H₆ Catalyst $Y \, CH_4$ $X \ C_2 H_4$ $Y \ C_3 H_6$ $Y \ C_3 H_8$ 1Na/Fe 17.6 1.1 0.1 1.3 15.1 0.5 0.1 5Mn-Na/Fe 17.4 15.8 1.1

Table S4 Catalytic performance of 1Na/Fe and 5Mn-Na/Fe catalyst for C_2H_4 hydrogenation

Reaction conditions: 320 °C; $H_2/C_2H_4 = 5$; 0.1 MPa; 3600 mL h⁻¹ g_{cat}⁻¹; X C₂H₄ is the conversion of C₂H₄; Y is the yield of product.

Fig. S1 XRD patterns (a) and Mössbauer spectra (b) of the fresh and used $1Na/Fe_5C_2$ catalysts.

The 1Na/Fe₅C₂ catalyst was synthesized by carbonizing the iron oxide in CO/N₂ atmosphere as reported (J. Mater. Sci. 1990, 25, 4457-4461). XRD patterns (Fig. S1a) show the formation of Fe₅C₂ species (PDF: 00-36-1248), confirmed by the Mössbauer spectra (Fig. S1b and Table S3). Table S2 shows the catalytic performance of 1Na/Fe₅C₂ catalyst. The CO₂ conversion and $C_2^{=}$ - $C_4^{=}$ selectivity of 1Na/Fe₅C₂ catalyst was basically equal to 1Na/Fe catalyst, confirming the role of Fe₅C₂. Mössbauer

spectroscopy characterization of the used Fe_5C_2 catalyst indicated the Fe_3O_4 and Fe_5C_2 contents were 76.8% and 23.2%, respectively (Table S3). The majority of Fe_5C_2 species were converted to Fe_3O_4 under the CO_2 hydrogenation reaction conditions, possibly due to the oxidizing atmosphere of CO_2 and H_2O . Besides, this result also indicates that both the Fe_3O_4 and Fe_5C_2 species are important for CO_2 hydrogenation to olefins. Fe_3O_4 acted as active species for CO_2 converting to CO and Fe_5C_2 species are active for hydrocarbon formation from C-C coupling reaction. Therefore, it can be inferred that Fe_5C_2 species plays a critical role in the formation of olefins in CO_2 hydrogenation.