Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2018

Nanoporous 2D Semiconductors Encapsulated by Quantum-Sized Graphitic Carbon Nitride: Tuning Directional Photoinduced Charge Transfer via Architecture Modulation

Zhi-Yu Liang^{a,b,c}, Ming-Hui Huang,^a Si-Yi Guo^{a,b}, Yan Yu^{a,b,*}, Wei Chen^{a,b}, Fang-Xing Xiao^{a*}

^aCollege of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China.

^bKey Laboratory of Eco-materials Advanced Technology (Fuzhou University), Fujian Province University, China.

^cFujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde, Fujian Province 352100, China.

*Corresponding author. Fax: +86 591 22866534;

E-mail: yuyan@fzu.edu.cn fxxiao@fzu.edu.cn

Appendix: experiment section

1. Synthesis of bulk $g-C_3N_4$

10g urea was heated in a covered crucible with a ramp rate of about 8 °C/min from room temperature to 550 °C and then holding it under air condition for 2 h, after which the yellow product obtained after cooling was bulk $g-C_3N_4$.

2. Synthesis of bulk CdS

According to conventional chemical precipitation, bulk CdS was synthesized by adding CdCl₂ aqueous solution (50 mL 0.5 M) into Na₂S aqueous solution (50 mL 0.5 M) under constantly stirring at ambient conditions. After stirring for 30 min, bulk CdS precipitation was collected and dried in air at 60 °C for 12 h.

Fig. S1. FESEM images of (a) bCN and (b) bCdS.

Fig. S2. (a-b) FESEM images of ZnS NSs precursor template for fabrication of CdS NSs.

Fig. S3. Zeta potentials of (a) $g-C_3N_4$ QDs, (b) CdS NSs and CdS NSs with APTES.

Fig. S4. Time-dependent UV-vis absorption spectra of (a) NB, (b) 4-NA, (c) 3-NA, (d) 2-NA, (e) 4-NT, (f) 4-NP, (g) 3-NP and (h) 2-NP (30 ppm) taken at regular time interval over 2%CN-CdS NSs heterostructure.

Fig. S5. Cyclic experiments for photo-reduction of (a) 4-NA and photo-oxidation of (b) Rh B over 2%CN-CdS NSs heterostructures visible light irradiation (λ >420 nm).

Fig. S6. BET measure of (a) CdS NSs, (b) g-C₃N₄ QDs and (c) 2%CN-CdS NSs.

	BET surface area (m ² /g)	Pore volume (cm ³ /g)	Pore size (nm)
CdS NSs	103.4	0.21	8.4
g-C ₃ N ₄ QDs	5.7	0.083	43.6
2%CN-CdS NSs	68.9	0.25	14.0

Tab. S1. BET surface area, pore volume and pore size of different samples.

Fig. S7. Photocatalytic degradation of (a) RhB, (c) phenol, (d) SA, (e) MB and (f) MGO over CdS NSs, $g-C_3N_4$ QDs and 2%CN-CdS NSs heterostructure under visible light irradiation (λ >420 nm) at ambient conditions. (b) Control experiments by adding different scavengers for quenching different active species during the photocatalytic degradation of RhB over 2%CN-CdS NSs heterostructure.

Fig. S8. Time-dependent UV-vis absorption spectra of (a) RhB, (b) phenol, (c) SA, (d) MB and (e) MGO (30 ppm) taken at regular time interval over 2%CN-CdS NSs heterostructure.

Fig. S9. Linear correlation between the concentration of H₂O₂ and light absorbance in the UV-vis absorption curves.