Electrochemical Synthesis of Ammonia from N₂ and H₂O Using A Typical Non-noble Metal Carbon-based Catalyst under Ambient Conditions

Linchuan Cong^a, Zhuochen Yu^a, Fangbing Liu^a, Weimin Huang^{*a,b} a College of Chemistry, Jilin University, Changchun 130012, China b Key Laboratory of Physics and Technology for Advanced Batteries of Ministry of Education, Jilin University, Changchun 130012, China

*Corresponding Author E-mail address: <u>huangwm@jlu.edu.cn</u> (W. Huang).

Figure.S1 The schematic diagram of the experimental device

Figure.S2 TEM of (a) the Fe-doped carbon (CF) and (b) the N-doped carbon (NC)

Figure.S3 EDS spectrum for the resultant NCF.

element	С	N	Fe
Content(%)	87.34	6.17	6.49

Table. S1 Percentage of different elements for NCF.

Figure. S4 TGA for the resultant NCF.

Figure.S5 BJH pore diameter distribution of NCF.

Figure. S6 Yield rate and FE of NH₃ with different iron content about NCF.

Figure. S7 TEM images of the NCF-Fe_{2.5}.

Figure. S8 UV-Vis curves of indophenol tests under different iron content about NCF.

Figure. S9 UV-Vis curves of indophenol tests under different potentials.

Figure.S10 ¹H NMR spectra of the ${}^{15}NH_4^+$ or ${}^{14}NH_4^+$ standards and the electrochemical NRR product using the NCF catalyst in the ${}^{15}N_2$ and ${}^{14}N_2$ atmosphere, respectively.

System/Catalyst	Conditions	NH3 Yield	FE	Testing Method	Reference
NCF	ambient	15.804 μg h ⁻¹ mg _{cat.} ⁻¹	2.72%	Indophenol method	This work
Pt/C	80°C	$\begin{array}{c} 9.37{\times}10^{-6} \\ mol \ m^{-2} \ s^{-1} \end{array}$	0.83%	Nessler's reagent	<i>RSC Adv.</i> 2013 , 3, 18016.
Mo nanofilm	ambient	$\begin{array}{c} 3.09 \times 10^{-11} \\ \text{mol s}^{-1} \text{ cm}^{-2} \end{array}$	0.72%	Indophenol method	<i>J. Mater. Chem. A</i> , 2017 , 5 , 18967–18971
MoS ₂ /CC	ambient	$\begin{array}{c} 8.08{\times}10^{-11} \\ mol \ s^{-1} \\ cm^{-2} \end{array}$	1.17%	Indophenol method	<i>Adv. Mater.</i> , 2018 , 30, 1800191
MoO ₃ nanosheet	ambient	$\begin{array}{c} 29.43 \ \mu g \ h^{-1} \\ mg_{cat.}^{-1} \end{array}$	1.9%	Indophenol method	<i>J. Mater. Chem. A</i> , 2018 , 6, 12974-12977
TA-reduced Au/TiO ₂	ambient	21.4 μ g h ⁻¹ mg _{cat.} ⁻¹	8.11%	Indophenol method	<i>Angew. Chem. Int.</i> <i>Ed.</i> , 2018 , 57, 6073–6076.
α-Au/CeO _x - RGO	ambient	$\begin{array}{c} 8.31 \ \mu g \ h^{-1} \\ m g_{cat.}^{-1} \end{array}$	10.1%	Indophenol method	<i>Adv. Mater.</i> 2017 , 29, 1700001.
γ-Fe ₂ O ₃	ambient	$0.212 \ \mu g \ h^{-1} \\ m g_{cat.}{}^{-1}$	1.9%	spectrophotometry	ACS Sustain. Chem. Eng., 2017 , 5 , 10986– 10995.
Fe ₂ O ₃ /CNTs	ambient	$\begin{array}{c} 3.59 \times 10^{-12} \\ \text{mol s}^{-1} \text{ cm}^{-2} \end{array}$	0.15%	Indophenol method	<i>Angew. Chem., Int.</i> <i>Ed.</i> , 2017 , 56, 2699– 2703.
N-doped nanocarbon	ambient	27.2 μ g h ⁻¹ mg _{cat.} ⁻¹	1.42%	spectrophotometry	ACS Catal., 2018 , 8, 1186–1191.
Ru(7.8wt%)- Y ₅ Si ₃	500°C	1.9 mmol g ⁻ ¹ h ⁻¹		Ion chromatography	<i>J. Am. Chem. Soc.</i> 2016 , <i>138</i> , 3970-3973
$\frac{La_{0.8}Cs_{0.2}Fe_{0.8}Ni}{_{0.2}O_{3-\delta}}$	600 °C	1.23×10 ⁻¹⁰ mol s ⁻¹ cm ⁻²	0.55%	ammonia meter	<i>Electrochim. Acta</i> , 2014 , 123, 582–587.
Fe ₂ O ₃ (Salicylic Method)	250 °C, 25 bar		35%	Indophenol method	<i>Science</i> 2014 , <i>345</i> , 637.

Table S2. Comparison of the NH₃ electrosynthesis activity for NCF with other NRR catalysts.