Supplementary Information

Figure S1. FESEM images of the bulk $g-C_3N_4$ structure synthesized without ethanol treatment under the same experimental conditions.

Figure S2. Brunauer-Emmett-Teller (BET) surface area of $g-C_3N_4$ structures synthesized with and without AA; (A) pure $g-C_3N_4$, (B) 2 wt% AA- $g-C_3N_4$, (C) 5 wt% AA- $g-C_3N_4$, (D) 10 wt% AA- $g-C_3N_4$, (E) 16 wt% AA- $g-C_3N_4$, and (F) 20 wt% AA- $g-C_3N_4$.

Figure S3. X-ray photoelectron spectroscopy (XPS) analysis data for the $g-C_3N_4$ structure without AA incorporation; survey (A), C 1s (B) and N 1s (C).

Figure S4. XPS analysis data for the $g-C_3N_4$ structure with 16 wt% AA incorporation; survey (A), C 1s (B) and N 1s (C).

Figure S5. Recyclability of $g-C_3N_4$ structure with 16 wt% AA (CN16) for H₂ evolution under simulated sunlight irradiation.

Figure S6. Room temperature photoluminescence spectra of CN0, CN16 and AA structures.

Table S1. Summary of BET values for the pristine and AA treated g-C₃N₄ structures.

Table S2. Quantitative XPS analysis of pure and AA-g-C₃N₄ structures.

Table S3. Comparison of H_2 evolution from doped g-C₃N₄-based hybrid structures between the literature and the present work.

Figure S1

Figure S2 (A to F)

Figure S3 (A to C)

Figure S4 (A to C)

Figure S5

Figure S6

Sr. No.	Sample Name	Surface Area (m ² g ⁻¹)
1	CN0	5.52
2	CN2	18.40
3	CN5	30.49
4	CN10	63.91
5	CN16	193.98
6	CN20	125.55

Table TS1

Sample details	Carbon (%)	Nitrogen (%)	Oxygen (%)	C/N ratio
CN0	46.24	62.49	2.65	0.73
CN2	44.06	53.9	2.03	0.81
CN5	43.91	53.79	2.3	0.81
CN10	44.95	52.62	2.42	0.85
CN16	44.31	53.94	1.76	0.83
CN20	50.72	45.21	4.08	1.12

Table TS2

		Catalyst	Saarifiaial	Reaction	Hydrogen	
Photocatalyst	Light Source	powder	Sacrificial	Solution	evolution	Ref.
		(mg)	agent	(mL)	(µmol.h ⁻¹)	
Porous defect-	300W Xe Lamp					
modified	$(\lambda > 420 \text{ nm})$	10	TEOA	100	2092	S1
g-C ₃ N ₄						
Bimodal porous	300W Xe Lamp	200	TEOA	200	1900	S2
g-C ₃ N ₄	$(\lambda > 400 \text{ nm})$					
Oxygen doped	300W Xe Lamp	30	TEOA	50	1050.3	S3
g-C ₃ N ₄	$(\lambda > 420 \text{ nm})$	50				
Carbon rich	300W Xe Lamp	20	TEOA	35	125.1	S4
g-C ₃ N ₄	$(\lambda > 420 \text{ nm})$	20				
Ultrathin g-C ₃ N ₄	150 W Xe lamp	10	TEOA	10	5498.24	S5
nanosheets	$(\lambda > 420 \text{ nm})$					
Amorphous	350 W Xe lamp	50	TEOA	80	212.8	S6
carbon/g-C ₃ N ₄	$(\lambda > 420 \text{ nm})$					
g-C ₃ N ₄ nanobelts	300W Xe Lamp	20	TEOA	80	1360	S7
	$(\lambda > 400 \text{ nm})$					
Carbon quantum	500 W Xe lamp		TEOA	25	382	S8
dot modified g-	$(\lambda > 420 \text{ nm})$	15				
C_3N_4	(10 120 1111)					
Porous P-doped	Porous P-doped 300W Xe Lamp		TEOA	100	1596	S 9
g-C ₃ N ₄	$(\lambda > 400 \text{ nm})$	50	ilon	100	10,0	~
Oxygen	300 W Xe lamp	50	TEOA	100	1062.4	S10
substituted g-C ₃ N ₄	$(\lambda > 420 \text{ nm})$					
Bulk $g-C_3N_4$ 300 W Xe la					31	Present
16% AA mediated	$(\lambda > 400 \text{ nm})$	2	TEOA	40	422	work
g-C ₃ N ₄						

Table TS3

Supporting References

[1] Z. Chen, T.-T. Fan, X. Yu, Q.-L. Wu, Q.-H. Zhu, L.-Z. Zhang, J.-H. Li, W.-P. Fang, X.-D. Yi, Journal of Materials Chemistry A, 6 (2018) 15310-15319.

[2] P. Hu, C. Chen, R. Zeng, J. Xiang, Y. Huang, D. Hou, Q. Li, Y. Huang, Nano Energy, 50 (2018) 376-382.

[3] L. Li, X. Zhu, ACS Applied Nano Materials, 1 (2018) 5337-5344.

[4] C. Liu, H. Huang, W. Cui, F. Dong, Y. Zhang, Applied Catalysis B: Environmental, 230 (2018) 115-124.

[5] J. Ran, T.Y. Ma, G. Gao, X.-W. Du, S.Z. Qiao, Energy & Environmental Science, 8 (2015) 3708-3717.

[6] S. Sun, J. Li, J. Cui, X. Gou, Q. Yang, S. Liang, Z. Yang, J. Zhang, Inorganic Chemistry Frontiers, 5 (2018) 1721-1727.

[7] Q. Xu, B. Cheng, J. Yu, G. Liu, Carbon, 118 (2017) 241-249.

[8] Y. Zeng, C. Liu, L. Wang, S. Zhang, Y. Ding, Y. Xu, Y. Liu, S. Luo, Journal of Materials Chemistry A, 4 (2016) 19003-19010.

[9] D. Zhang, Y. Guo, Z. Zhao, Applied Catalysis B: Environmental, 226 (2018) 1-9.

[10] J.-H. Zhang, Y.-J. Hou, S.-J. Wang, X. Zhu, C.-Y. Zhu, Z. Wang, C.-J. Li, J.-J. Jiang, H.-P. Wang, M. Pan, C.-Y. Su, Journal of Materials Chemistry A, 6 (2018) 18252-18257.