MOFs-derived hierarchical hollow spheres composed of carbonconfined Ni nanoparticles for efficient CO₂ methanation

Xiahui Lin^{a,b,c}, Sibo Wang^b, Wenguang Tu^b, Zhibiao Hu^c, Zhengxin Ding^a, Yidong

Hou^a, Rong Xu^b, Wenxin Dai^{a*}

^a State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fujian, Fuzhou, 350002, China

^b School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore

^c College of Chemistry and Materials Science, Longyan University, Fujian, Longyan,
364012, China

Fig. S1 XRD pattern of Ni-MOF.

Fig. S2 EDX spectrum of Ni-MOF. Inset shows the corresponding weight contents of the elements.

Fig. S3 FESEM images of hierarchical Ni-MOF microspheres.

Fig. S4 EDX spectrum of Ni@C. Inset shows the corresponding weight contents of the elements.

Fig. S5 TGA results of Ni-MOF in a N₂ atmosphere with a heating rate of 5 °C min⁻¹.

Fig. S6 FT-IR spectra of Ni-MOF and Ni@NC samples.

Fig. S7 TGA results of Ni@C in an air atmosphere with a heating rate of 5 °C min⁻¹.

Fig. S8 (a,b) TEM images of hierarchical Ni@C microspheres.

Fig. S9 SAED pattern of Ni@C sample.

Fig. S10 Elemental mappings of an individual hierarchical Ni@C microsphere.

Fig. S11 (a) CO_2 methanation performance of Ni@C and Ni/C catalysts under different temperatures. (b) Arrhenius plots for CO_2 methanation over Ni@C and Ni/C catalysts.

Catalyst	Temp. (°C)	GHSV (mL g ⁻¹ h ⁻¹)	Con. _{CO2} (%)	Sel. _{CH4} (%)	TOF (10 ⁻³ s ⁻¹)	Ref.
Ni@C	300	33000	91.16	99.9	4.28	This work
12Ni4.5Ce/CNT ^a	350	30000	83.8	100	/	1
Ni/MSN ^b	300	50000	64.1	99.9	1.61	2
OMA-2Co8Ni ^c	400	15000	79.9	98.3	/	3
15%Ni/ZSM-5	250	2400	27.1	99	7.56	4
15%Ni/TiO ₂	260	2400	96	99	1.22	5
Ni _{0.8} Mg _{0.2} @SiO ₂	300	60000	87	99	/	6
Ni(21.7)@S16C ^d	500	36000	33	30	12	7
Ni/CeO ₂	350	10000	100	100	/	8
Ni-Al ₂ O ₃ -HT ^e	350	75000	82.5	99.5	5.7	9
7.5Ni2.5Fe/Al ₂ O ₃	250	32000	22.1	99	5.9	10

Table S1. Comparison of CO_2 methanation performance of Ni@C with that of other Ni-based catalysts at atmospheric pressure.

^a CNT: multi-walled carbon nanotubes.

^b MSN: mesostructured silica nanoparticles.

^c OMA: ordered mesoporous Al₂O₃.

^d S16C: the cage-type mesopores of –COOH-functionalized mesoporous silica SBA-16.

^e HT: hydrotalcite.

Element	Line Type	Wt%					
		Ni@C-1#	Ni@C-2 [#]	Ni@C-3#	Ni@C-4#		
С	K series	20.40	20.92	23.10	22.97		
Ni	K series	79.60	79.08	76.90	77.03		
Total:		100.00	100.00	100.00	100.00		

Table S2. The weight contents of the elements of four Ni@C samples (denoted as Ni@C-1[#], Ni@C-2[#], Ni@C-3[#] and Ni@C-4[#]) prepared in different batches.

Supplementary references

1 W. Wang, W. Chu, N. Wang, W. Yang and C. Jiang, *Int. J. Hydrogen Energy*, 2016, **41**, 967-975.

2 M. A. A. Aziz, A. A. Jalil, S. Triwahyono, R. R. Mukti, Y. H. Taufiq-Yap and M. R. Sazegar, *Appl. Catal. B Environ.*, 2014, **147**, 359-368.

3 L. Xu, X. Lian, M. Chen, Y. Cui, F. Wang, W. Li and B. Huang, *Int. J. Hydrogen Energy*, 2018, **43**, 17172-17184.

4 X. Guo, A. Traitangwong, M. Hu, C. Zuo, V. Meeyoo, Z. Peng and C. Li, *Energy & Fuels*, 2018, **32**, 3681-3689.

5 J. Liu, C. Li, F. Wang, S. He, H. Chen, Y. Zhao, M. Wei, D. G. Evans and X. Duan, *Catal. Sci. Technol.*, 2013, **3**, 2627-2633.

6 Y. Li, G. Lu and J. Ma, RSC Adv., 2014, 4, 17420-17428.

7 C. S. Chen, C. S. Budi, H.-C. Wu, D. Saikia and H. M. Kao, *ACS Catal.*, 2017, 7, 8367-8381.

8 S. Tada, T. Shimizu, H. Kameyama, T. Haneda and R. Kikuchi, *Int. J. Hydrogen Energy*, 2012, **37**, 5527-5531.

9 L. He, Q. Lin, Y. Liu and Y. Huang, J. Energy Chem., 2014, 23, 587-592.

10 D. Pandey and G. Deo, J. Ind. Eng. Chem., 2016, 33, 99-107.