Supporting Information

The Role of H₂S Addition on Pt/Al₂O₃ Catalyzed Propane Dehydrogenation: A Mechanistic Study

Hai-Zhi Wang a, Wei Zhang a, Jia-Wei Jiang a, Zhi-Jun Sui a,1, Yi-An Zhu a, Guang-

Hua Ye^a, De Chen^b, Xing-Gui Zhou^a, Wei-Kang Yuan^a

^a State Key Laboratory of Chemical Engineering, East China University of Science

and Technology, Shanghai 200237, China

^b Department of Chemical Engineering, Norwegian University of Science and

Technology, N-7491 Trondheim, Norway

¹Corresponding author. Email: zhjsui@ecust.edu.cn

S1. The adsorption of sulfur species on Pt(111) and Pt(211) surfaces

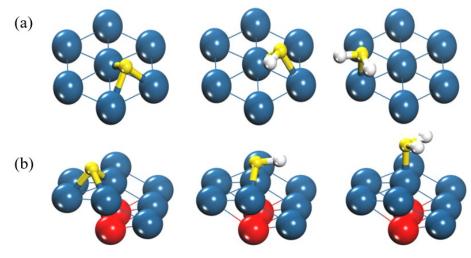


Figure S1. Configurations of sulfur species adsorbed on (a) Pt(111) and (b) Pt(211).

S2. Activation energies for elementary reaction steps

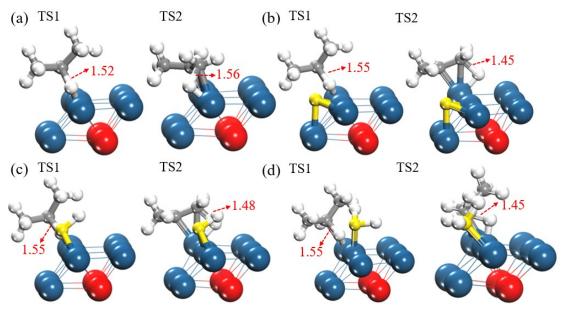
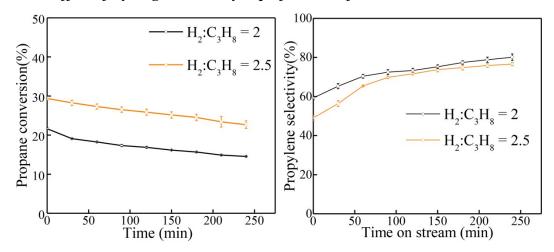



Figure S2. Transition state structures for PDH reaction over (a) the clean Pt(211) surface, (b) the Pt(211)&S surface, (c) the Pt(211)&SH surface, and (d) the Pt(211)&H₂S surface.

S3. The effect of hydrogen on catalytic performance for PDH

Figure S3. (a) Propane conversion and (b) propylene selectivity of Pt/θ -Al₂O₃ with different molar ratios of H₂ to propane in the reaction feed. Reaction conditions: 0.1 g catalyst, $P_t = 1$ atm, and T = 575 °C.