Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

for

Kinetic and mechanistic aspects of solid state, nanostructured porphyrin diacid photosensitizers in photooxidation of sulfides

Rahele Nasrollahi, Akram Heydari-turkmani, Saeed Zakavi*

Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.

*Email: <u>zakavi@iasbs.ac.ir</u>

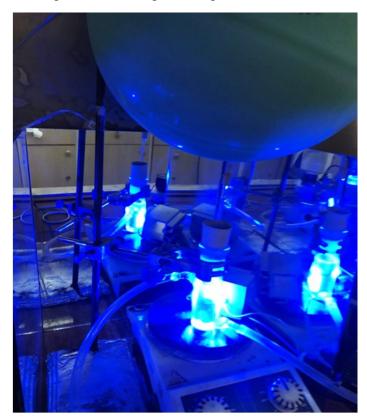
- **S1.** ¹H NMR, ¹³C NMR and UV-Vis spectral data of the used porphyrins
- **S2.** Experimental setup for the photooxidation reactions
- **S3.** Procedures for the oxidation of different sulfides and characterization of the oxidation products
- **S4.** The results of EDX elemental analysis of H₂T(2-Cl)PP@nanoAmb
- **S5.** The change in the UV–vis spectrum of DPBF upon irradiation with a 10W red LED lamp in the presence of the immobilized porphyrins.
- **S6.** Photooxidation of different *para*-substituted phenyl methyl sulfides by H₂TPP@nanoAmb.

S1: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the used porphyrins

H₂TPP. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.77 (2H, br, s, NH), 7.77-7.84 (8H_m and 4H_{p,m}), 8.26-8.27 (8H_o, d),8.90 (8H_β, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 120.18 (C_{meso}), 142.20 (C₁), 134.60 (C₂, C₆), 126.73 (C₃, C₅),127.75 (C₄), 131.5 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 417 (5.79), 513 (4.58), 548 (4.38), 590 (4.30), 647 (4.29).

H₂T(2-Me)PP. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.59 (2H, br, s, NH), 7.54-7.74 (8H_m and 4H_{p,m}, meta and para position relative to C atom attached to meso position), 7.99-8.11 (4Ho, m, ortho-position relative to C atom attached to meso position), 8.70 (8H_β, s), 2.01-2.11 (12H_{Me}, m);); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 118.82 (C_{meso}), 139.54 (C₁),139.63 (C₂), 128.38 (C₃), 129.22 (C₄), 124.21 (C₅), 133.90 (C₆), 141.48 (C_α), 129.22 (C_β), 21.37 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 416 (6.04), 512 (4.74), 545 (4.34), 589 (4.34), 645 (4.25).

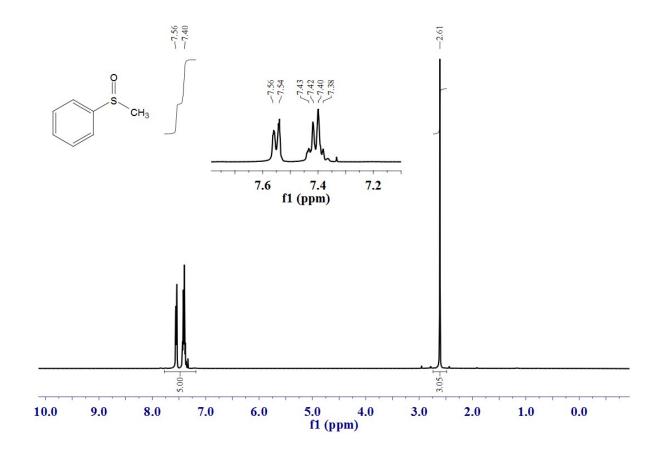
H₂T(2-Cl)PP. ¹H NMR (400MHz, CDCl₃, TMS), δ/ppm: -2.62 (2H, br, s, NH), 7.66-7.87 (8H_m and 4H_{p,m}, meta and para position relative to C atom attached to meso position), 8.10-8.26 (4Ho, m, ortho-position relative to C atom attached to meso position), 8.72 (8H_β, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 116.76 (C_{meso}), 137.10 (C_1), 136.94 (C_2), 129.01 (C_3),129.93 (C_4), 125.32 (C_5), 135.52 (C_6), 140.50 ($C_α$), 135.39 ($C_β$); UV-vis in CH₂Cl₂, λmax/nm (logε): 416 (5.64), 512 (4.47), 543(4.07), 587 (4.15), 643 (3.96).

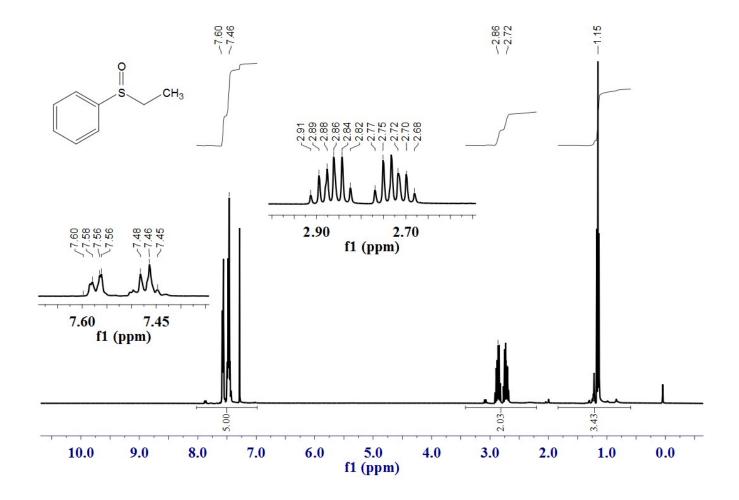

H₂T(4-Cl)PP. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.83 (2H, br, s, NH), 7.77-7.79 (8Hm, d), 8.15-8.17 (8Ho, d), 8.87(8Hβ, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 119.01 (Cmeso), 140.37 (C1), 135.52 (C2, C6), 127.07 (C3, C5), 134.41(C4), 131.64 (Cβ); UV-vis in CH₂Cl₂, λmax/nm (logε): 418 (5.79), 513 (4.52), 547 (4.25), 590 (4.16), 647 (4.10).

H₂T(4-OMe)PP. ¹H NMR (400 Hz, CDCl₃, TMS), δ/ppm: -2.72 (2H, br, s, NH), 7.29-7.32 (8H_m, d), 8.15-8.17 (8H_o, d), 8.89(8H_β, s), 4.13 (12H_{Me}, s); ¹³C NMR (~100MHz, CDCl₃, TMS), δ/ppm: 119.75 (C_{meso}), 134.67 (C_1), 135.62 (C_2 , C_6), 112.20 (C_3 , C_5), 159.39 (C_4), 131.34 (C_5), 55.61 (C_{Me}); UV-vis in CH₂Cl₂, $λ_{max}$ /nm (logε): 421 (5.61), 517 (4.32), 555 (4.22), 593 (4.06), 651

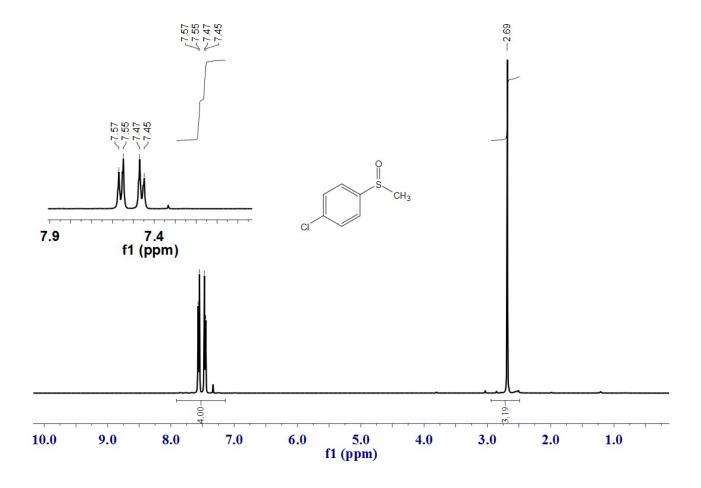
H₂T(4-Me)PP. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.76 (2H, br, s, NH), 7.55-7.58 (8H_m, d), 8.09-8.12 (8H_o, d), 8.86(8Hβ, s), 2.65 (12H_{Me}, s); ¹³C NMR (~100 MHz, CDCl₃, TMS), δ/ppm: 120.47 (C_{meso}), 139.73 (C_{1}), 134.92 (C_{2} , C_{6}), 127.81 (C_{3} , C_{5}), 137.71 (C_{4}), 131.37 ($C_{β}$), 21.57 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 418 (5.89), 516 (4.54), 551 (4.34), 590(4.18), 647 (4.20).

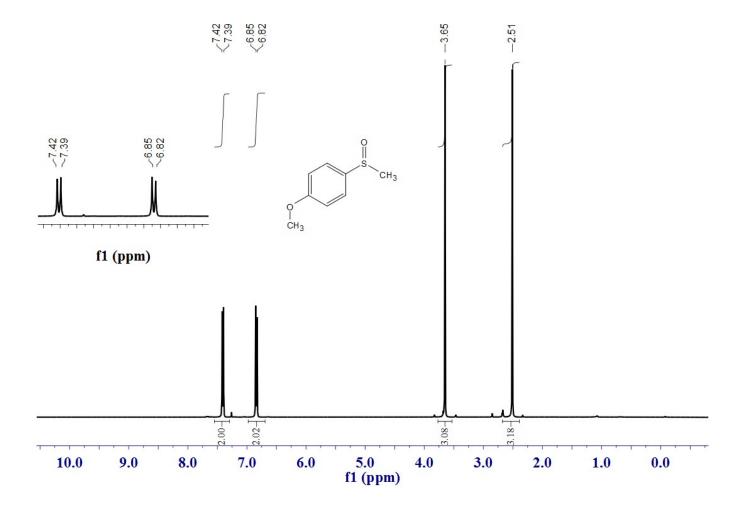
H₄TPP(HSO₄)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: 7.984-8.074 (8H_m and 4H_p, m), 8.626-8.663 (8H_o, m), 8.626-8.663 (8H_β, m), no signal was observed for the NH protons at 20 0 C.; $_{13}$ C NMR (400MHz, CDCl₃, TMS), δ/ppm: 122.63 (C_{meso}), 139.93 (C₁), 139.05 (C₂, C6), 128.12 (C₃, C5), 130.01 (C₄), 146.05 (C_α), 128.40(C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 445 (5.70), 611 (3.43), 662 (3.77).


S2. Experimental setup for the photooxidation reactions

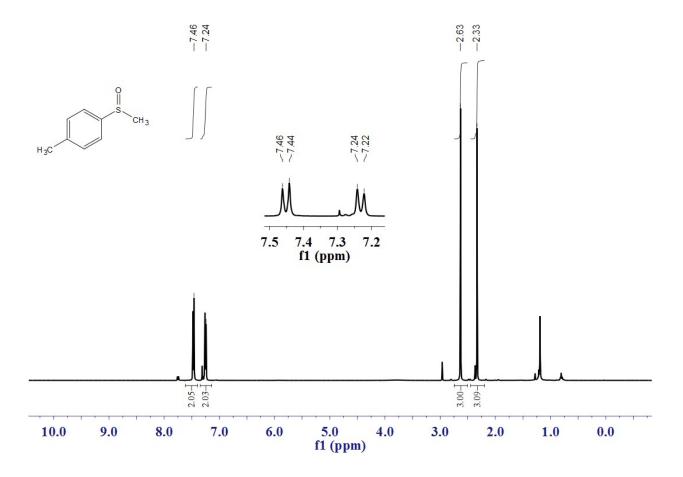

S3: Procedures for the oxidation of different sulfides and characterization of the oxidation products

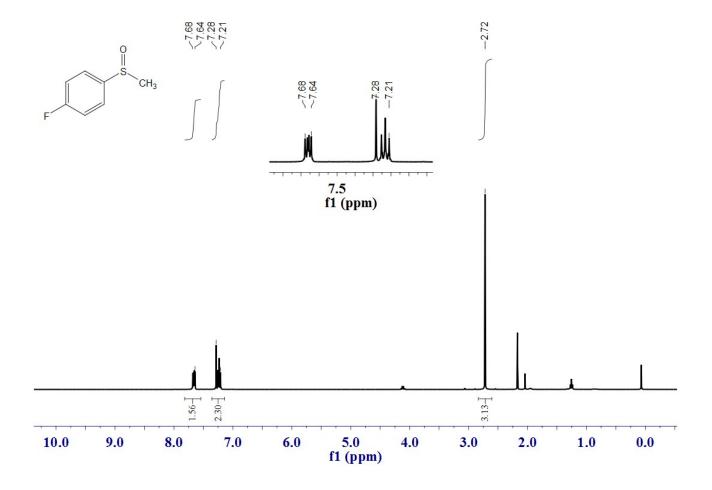
Methyl phenyl sulfoxide: Methyl phenyl sulfide (409.20 mg, 3.3 mmol) was performed according to the general procedure using $H_2TPP@nanoAmb$ (0.66 × 10⁻³ mmol). Crude material

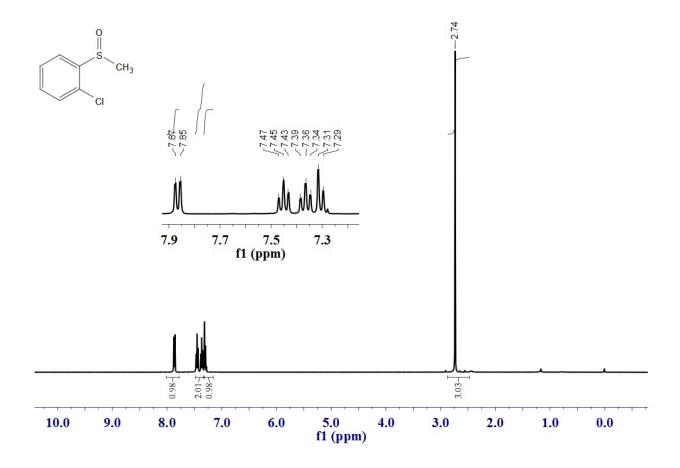

was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give Methyl phenyl sulfoxide; yield: 92%. 1 H NMR (400 MHz, CDCl₃): δ = 7.56–7.38 (m, 5H), 2.61 (s, 3H).

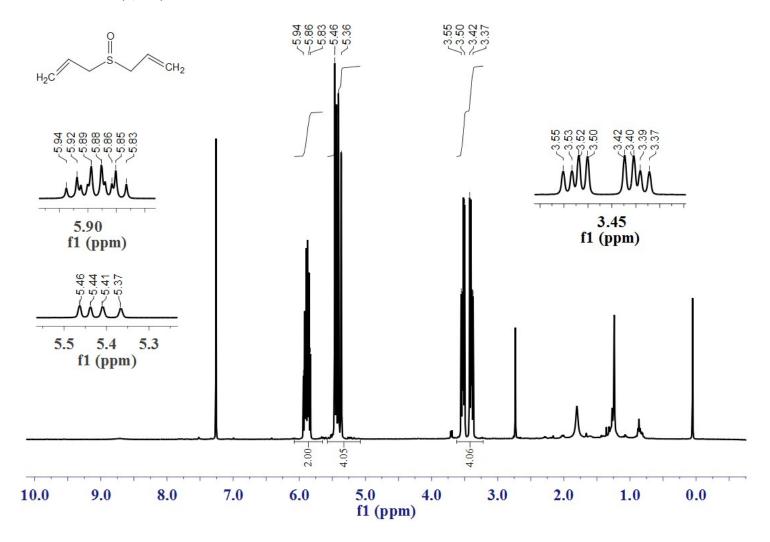

Ethyl phenyl sulfoxide: Ethyl phenyl sulfide (465.18 mg, 3.3 mmol) was performed according to the general procedure using H₂TPP@nanoAmb (0.66 × 10⁻³ mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give Ethyl phenyl sulfoxide; yield: 97%. ¹H NMR (400 MHz, CDCl₃): δ = 7.60–7.45 (m, 4H), 2.91-2.82 (m, 1H), 2.77-2.68 (m, 1H), 1.15 (t, 3H).

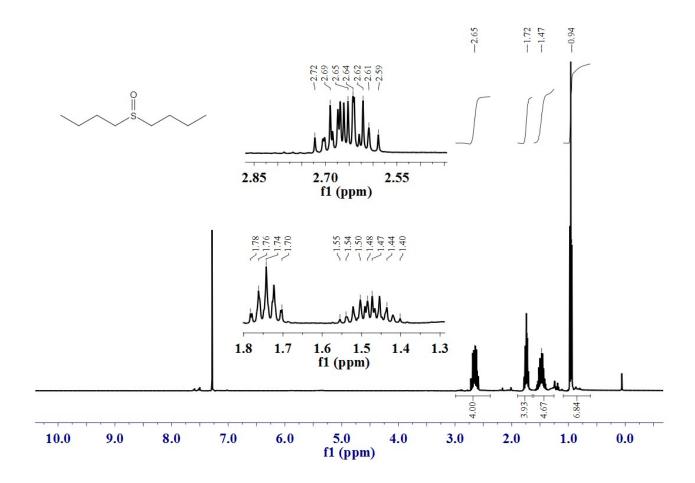
4-Chlorophenyl methyl sulfoxide: 4-Chlorophenyl methyl sulfide (675.16 mg, 3.3 mmol) was performed according to the general procedure using H₂TPP@nanoAmb (0.66×10^{-3} mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give 4-Chlorophenyl methyl sulfoxide; yield: 99%. ¹H NMR (400 MHz, CDCl₃): δ = 7.57-7.55 (m, 2H), 7.47-7.45 (m, 2H), 2.69 (s, 3H).


4-Methoxyphenyl methyl sulfoxide: 4-Methoxyphenyl methyl sulfide (564.83 mg, 3.3mmol) was performed according to the general procedure using H₂TPP@nanoAmb (0.66 × 10⁻³ mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give 4-Methoxy phenyl sulfoxide; yield: 95%. ¹H NMR (400 MHz, CDCl₃): δ = 7.42 (d, 2H), 6.85 (d, 2H), 3.65 (s,3H), 2.51 (s,3H).

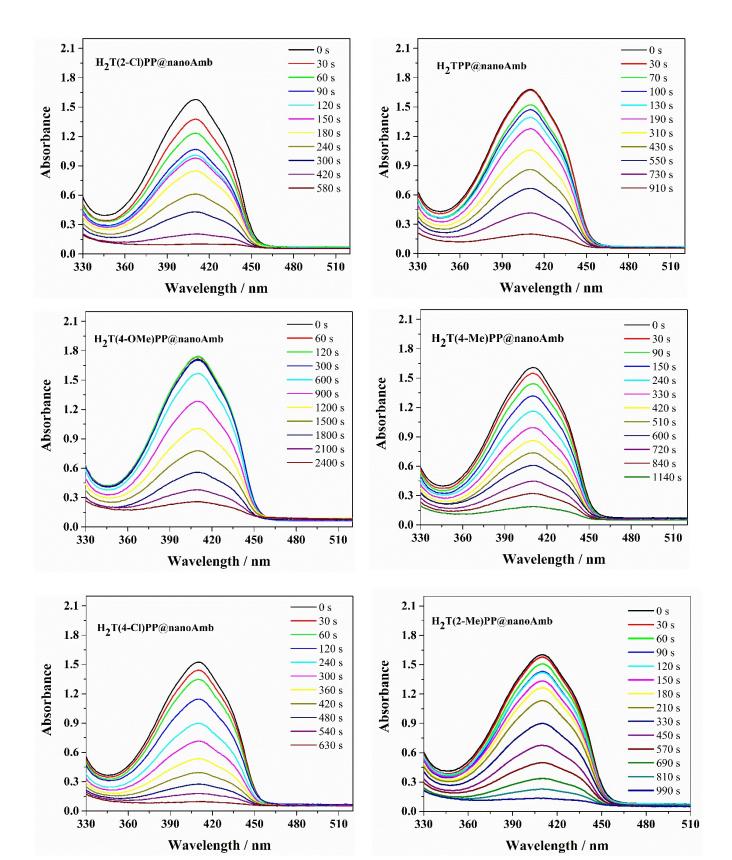

4-Cyanophenyl methyl sulfoxide: 4-Cyano phenyl methyl sulfide (492.36 mg, 3.3 mmol) was performed according to the general procedure using H₂TPP@nanoAmb (0.66 \times 10⁻³ mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give 4-Cyanophenyl methyl sulfoxide; yield: 93%. ¹H NMR (400 MHz, CDCl₃): δ = 7.82-7.80 (m, 2H), 7.75-7.73 (m, 2H), 2.74 (s, 3H).

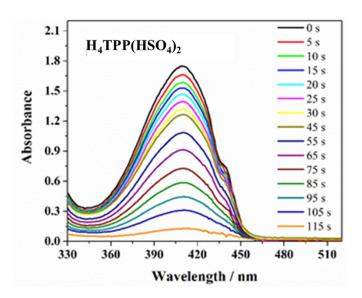

1-methyl 4- methyl phenyl sulfoxide: 1-methyl 4- methyl phenyl sulfide (468.47 mg, 3.3 mmol) was performed according to the general procedure using H₂TPP@nanoAmb (0.66 × 10^{-3} mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give 1-methyl 4- methyl phenyl sulfoxide; yield: 99%. ¹H NMR (400 MHz, CDCl₃): δ = 7.46-7.44 (d, 2H), 7.24-7.22 (d, 2H), 2.63 (s, 3H), 2.33 (s,3H).


4-Flourophenyl methyl sulfoxide: 4-Flourophenyl methyl sulfide (797.74 mg, 3.3 mmol) was performed according to the general procedure using H₂TPP@nanoAmb (0.66 × 10⁻³ mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give 4-Flourophenyl methyl sulfoxide; yield: 99%. ¹H NMR (400 MHz, CDCl₃): δ = 7.68-7.64 (m, 2H), 7.28-7.21 (m, 2H), 2.72 (s, 3H).


2-Chlorophenyl methyl sulfoxide: 2-Chlorophenyl methyl sulfide (675.16 mg, 3.3 mmol) was performed according to the general procedure using H₂TPP@nanoAmb (0.66 × 10⁻³ mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give 2-Chlorophenyl methyl sulfoxide; yield: 99%. ¹H NMR (400 MHz, CDCl₃): δ = 7.87-7.88 (d, 1H), 7.47-7.34 (m, 2H), 7.31-7.29 (m, 1H), 2.74 (s, 3H).

Diallyl sulfoxide: Dibutyl sulfide (335.40 mg, 3.3 mmol) was performed according to the general procedure using H₂TPP@nanoAmb (0.66×10^{-3} mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give Diallyl sulfoxide; yield: 97%. ¹H NMR (400 MHz, CDCl₃): δ = 5.94-5.83 (m, 2H), 5.46-5.35 (m, 4H), 3.55-3.37 (d, 4H).


Dibutyl sulfoxide: Dibutyl sulfide (405.54 mg, 3.3 mmol) was performed according to the general procedure using H₂TPP@nanoAmb (0.66×10^{-3} mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give Dibutyl sulfoxide; yield: 70%. ¹H NMR (400 MHz, CDCl₃): δ = 2.72-2.59 (m, 4H), 1.78- 1.70 (m, 4H), 1.55-1.40 (m, 4H), 0.94 (t,6H).



Benzyl phenyl sulfoxide: Benzyl phenyl sulfide (660.99 mg, 3.3 mmol) was performed according to the general procedure using H₂TPP@nanoAmb (0.66 × 10^{-3} mmol). Crude material was separated by TLC on silica gel plates (ethyl acetate and n-hexane in a 1:4 volume ratio) to give Benzyl phenyl sulfoxide; yield: 75%. ¹H NMR (400 MHz, CDCl₃): δ = 7.437-7.7.22 (m, 8H), 6.97 (d, 2H), 4.07-4.04 (d, 1H), 3.99-3.96 (d, 1H).

S5. The change in the UV–vis spectrum of DPBF upon irradiation with a 10W red LED lamp in the presence of the immobilized porphyrins.

S6. Photooxidation of different sulfides by H₂TPP@nanoAmb.^a

Substrate	Product	Conversion ^b	TON [TOF(h-1)]
		[Selectivity](%)	
S	O S CI	99 [100]	4950 [1650]
S	O = S	75 [100]	3750 [1250]
~~~\$~~~	O	70 [100]	3500 [1166]
<i>_</i> S <i>_</i> <	0     S	97 [100]	4850 [1616]

^a The catalyst and substrate were used in 1:5000 molar ratio. A 20 W white LED lamp was used as the light source. ^b For a reaction time of 3 h in 1:1 acetonitrile (5 mL)/ water (5 mL) solvent mixture.