Supplementary information

Switching the substrate preference of fungal aryl-alcohol oxidase: Towards stereoselective oxidation of secondary benzyl alcohols

Ana Serrano,^{a#} Ferran Sancho,^{b#} Javier Viña-González,^c Juan Carro,^a Miguel Alcalde^c, Victor Guallar,^{b,d} and Angel T. Martínez^{a*}

^a Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain

^bBarcelona Supercomputing Center, Jordi Girona 31, E-08034 Barcelona, Spain

^c Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco E-28049, Madrid, Spain

^d ICREA, Passeig Lluís Companys 23, E-08010, Barcelona, Spain

[#] These two authors equally contributed to the work

This Supplementary information includes **Tables S1-S3**, **Figs. S1-S4**, and supplementary **references**

Table S1. Spectroscopic properties of AAO and the nine variants analyzed, in50 mM phosphate, pH 6.0.					
	λ ^{band I} (nm)	λ ^{band II} (nm)	$\epsilon^{\text{band I}} (\text{M}^{-1}\text{cm}^{-1})^{a}$		
AAO	386	463	11050 ¹		
Y92F	386	463	10044 ²		
I500A	386	457	9925		
I500M	384	458	9609		
I500W	388	461	9668		
F501A	387	462	10389 ³		
F501W	387	462	9944 ³		
L315A/I500A	385	458	9904		
I391A/I500A	386	458	10089		
I500M/F501W	386	460	9290		

^aTaken from literature¹⁻³ or estimated here.

Table S2. Chromatographic conditions for secondary alcohol resolution by chiral HPLC.					
	<i>n</i> -Hexane/ isopropanol	R (min)	S (min)	Standard (RT, min)	
1-(p-Methoxyphenyl)-ethanol	98:2	18.8	20.0	2-phenyl-2-propanol (9.1)	
1-Phenyl-1-propanol	98:2	10.1	11.6	2-phenyl-2-propanol (9.1)	
1-Phenyl-2-methypropanol	99:1	12.0	12.5	4-methoxythioanisole (8.8)	

Table	S3.	Oxidation	rate	$(k_{obs}),$	conversion	yield,	and	(<i>R</i>)-1-(<i>p</i> -
methox	yphen	yl)-ethanol	ee in	24-h i	reactions of	(±)1-(p-	metho	xyphenyl)-
ethanol (5 mM) with AAO and nine variants (5 µM) in 50 mM phosphate, pH								
6.0, at 2	25⁰C.							

	k _{obs} (min⁻¹)	Conversion (%) ^a	ee (%)
AAO	3.8	34	51
Y92F	1.8	20	25
I500A	57.8	50	100
I500M	-	50	100
1500W	0	0	0
F501A	7.5	46	87
F501W	1.9	7	15
L315A/I500A	4.1	37	59
I391A/I500A	0.6	8	9
I500M/F501W	-	50	100

^aReferred to the racemic mixture

Supplementary references

- 1. F. J. Ruiz-Dueñas, P. Ferreira, M. J. Martínez and A. T. Martínez, *Protein Express. Purif.*, 2006, **45**, 191-199.
- 2. P. Ferreira, A. Hernández-Ortega, K. Borrelli, F. Lucas, B. Herguedas, V. Guallar, A. T. Martínez and M. Medina, *FEBS J.*, 2015, **282**, 3091-3106.
- 3. A. Hernández-Ortega, F. Lucas, P. Ferreira, M. Medina, V. Guallar and A. T. Martínez, *J. Biol. Chem.*, 2011, **286**, 41105-41114.

Fig. S1. Molar absorptivity spectra of $(\pm)1$ -(*p*-methoxyphenyl)-ethanol (**A**), $(\pm)1$ -phenyl-1-propanol (**B**) and $(\pm)1$ -phenyl-2-methylpropanol (**C**) in the ultraviolet region (*left*) and enlarged 250-280 nm peak (*right*).

Fig. S2. Separation of different concentrations of $(\pm)1$ -(*p*-methoxyphenyl)-ethanol by chiral HPLC (**A**) and calibration curves of *R* (**B**) and *S* (**C**) enantiomers yielding response factors (f_R and f_S) using an internal standard (IS), 2-phenyl-2-propanol (not shown).

Fig. S3. Molar absorptivity spectra of (*S*)-1-(*p*-fluorophenyl)-ethanol (*dashed line*) and *p*-fluoroacetophenone (*solid line*). The inset shows an enlargement of the alcohol spectrum.

Fig. S4. Oxidation rates of (*S*)-1-(*p*-methoxyphenyl)-ethanol by AAO and three selected variants during 2-h incubation. Reactions between alcohol (2.5 mM, racemic mixture) and enzyme (2.5 μ M) were performed in 50 mM phosphate, pH 6.0, at 25°C.