Supporting Information

Ni/NiM₂O₄ (M = Mn or Fe) Supported on N-Doped Carbon Nanotubes as Trifunctional Electrocatalysts for ORR, OER and HER

Qing Qin, Lulu Chen, Tao Wei, Yimeng Wang and Xien Liu*

Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China

E-mail: liuxien@qust.edu.cn

Electrochemical measurements

Hydrogen evolution reaction (HER). The HER activities of the prepared catalysts were tested in a typical tri-electrode system with a carbon rod counter electrode and a reversible hydrogen reference electrode. The Ni foam $(1 \times 1 \text{ cm}^2)$ coated with the catalyst was used as working electrode. 1 M KOH was used as the electrolyte. All LSV curves were obtained at a scan rate of 10 mV s⁻¹ without iR compensation.

The preparation method of the working electrode was according to the following steps: First, 2 mg of catalyst and 40 μ L of Nafion were added into 0.3 mL of a mixture of ultrapure water and ethanol (V_{water} : V_{ethanol} = 1 : 2). The homogeneous catalyst ink was obtained by ultrasonicating for 20 min. Then, 35 μ L of the catalyst ink was dropped onto the Ni foam and dried naturally.

Oxygen evolution reaction (OER). The OER performance of the two catalysts and the references was measured in a conventional three-electrode setup. The Ni foam ($1 \times 1 \text{ cm}^2$) modified with catalyst (0.21 mg cm⁻²) was used as working electrode, a reversible hydrogen electrode and a carbon rod were used as reference electrode and counter electrode, respectively. The electrolyte was 1 M KOH solution. The scan rate for all the LSV curves was 10 mV s⁻¹.

Oxygen reduction reaction (ORR). The ORR activity of the catalyst was investigated by the RDE technique in O_2 -satured 0.1 M KOH solution. The Hg/HgO electrode was used as the reference electrode and Pt wire was used as the counter electrode, respectively. All the LSV curves were obtained at a scan rate of 10 mV s⁻¹. All the potentials were versus to reversible hydrogen electrode (RHE) through RHE

calibration, according to the formula E (RHE) = E (Hg/HgO) + 0.0591pH + 0.098.

Zn-air batteries. Coating PTFE and the activated charcoal (the weight ratio = 3 : 7) on a nickel foam was used as the air cathodes. Each air cathode was fixed to ~ 700 µm in thickness. 200 µL of the Nafion and 10 mg of the catalyst was dispersed in 0.25 mL of ethanol and ultrasonicated to form a homogeneous ink. The catalyst ink of 200 µL was dropped into the above cathode and the air-cathode was put in a vacuum container. Thirty minutes later, a mildly pressing procedure was performed on the air-cathode. The prepared air-cathode was used for assembling primary Zn-air batteries. 6 M KOH was used as the electrolyte. Zn plate was used as the anode and Ni foam was used as the current collector.

Fig. S1 The low-resolution TEM images of the prepared catalysts. a) NCNT/Ni-Ni Mn_2O_4 , b) NCNT/Ni-NiFe₂O₄.

Fig. S2 The XRD patterns for the precursors of NCNT/Ni-NiFe₂O₄ and NCNT/Ni-NiMn₂O₄.

Fig. S3 Raman spectra of a) CNT, b) NCNT/Ni-NiFe₂O₄ and c) NCNT/Ni-NiMn₂O₄.

Fig. S4 Nitrogen adsorption-desorption isotherms of a) NCNT/Ni-NiFe₂O₄ and b) NCNT/Ni-NiMn₂O₄.

Fig. S5 Chronoamperometric responses of NCNT/Ni-NiFe₂O₄/Ni foam, NCNT/Ni-NiMn₂O₄/Ni foam and IrO₂/Ni foam for the OER at a constant potential of 1.48 V (*vs.* RHE).

Fig. S6 a) Cyclic voltammograms recorded for a NCNT/Ni-NiFe₂O₄/Ni foam electrode in the approximate region of 0.1–0.2 V vs. RHE at various scan rates for the purpose of determining the double layer capacitance. b) Plot showing the extraction of the double-layer capacitance (C_{dl}) of NCNT/Ni-NiFe₂O₄/Ni foam and NCNT/Ni-NiMn₂O₄/Ni foam.

Fig. S7 Chronoamperometric responses of NCNT/Ni-NiFe₂O₄/Ni foam, NCNT/Ni-NiMn₂O₄/Ni foam and Pt/C for the HER at a constant potential of -0.14 V (*vs.* RHE).

Fig. S8 Nyquist plots of NCNT/Ni-NiFe₂O₄/Ni foam and NCNT/Ni-NiMn₂O₄/Ni foam in 1 M KOH solution at open circuit potential: a) OER, b) HER.

Fig. S9 a) Polarization curves of the NCNT/Ni-NiFe₂O₄ and NCNT/Ni-NiMn₂O₄ for OER in 1 M KOH electrolyte. b) Polarization curves of the NCNT/Ni-NiFe₂O₄ and NCNT/Ni-NiMn₂O₄ for HER in 1 M KOH electrolyte.

Fig. S10 Chronoamperometric curves of NCNT/Ni-NiFe₂O₄, NCNT/Ni-NiMn₂O₄, and Pt/C at 0.60 V versus RHE in O₂-saturated 0.1 M KOH electrolyte.

Catalysts	Overpotential (mV) (@j=10 mA cm ⁻²)	Tafel Slope (mV dec ⁻¹)	Ref.	
NCNT/Ni-NiFe ₂ O ₄ /Ni foam	250	51	This work	
NCNT/Ni-NiMn ₂ O ₄ /Ni foam	300	89	I his work	
CoP/CP	320	82.8	1	
S-2-T5	302	90		
Mo-MOFs-T5	407	93	2	
ZIF-67-T5	387	92		
RuO ₂	355	104		
Ni _{0.33} Co _{0.67} MoS ₄ /CFC	283	68.8	3	
Ir/C	345	107	4	
Co-P film	390	91		
C0 ₉ S ₈	340	85.6	5	
IrO ₂	324	108	6	
C0 ₃ (PO ₄) ₂ @N-C	317	62	7	
Mo ₂ C/Co ₆ Mo ₆ C ₂ /NRGO	360	50	8	
IrO ₂	387	77		
Co ₃ ZnC/Co@CN	366	81	9	
Co/CNTs _{25 wt%}	380	81		
$Co_{0.8}Fe_{0.2}O_x$	430	85	10	
Fe ₃ O ₄ /CNTs _{25 wt%}	470	98		

Table S1. Comparison of OER performance in alkaline medium for NCNT/Ni-NiFe2O4/Ni foam and NCNT/Ni-NiMn2O4/Ni foam with other OER electrocatalysts

Table S2. Comparison of HER performance in alkaline medium for NCNT/Ni-

Catalysts	Overpotential (mV)(@j = 10 mA cm ⁻²)	Tafel Slope (mV dec ⁻¹)	Ref.	
NCNT/Ni-NiFe ₂ O ₄ /Ni foam	140	85		
NCNT/Ni-NiMn ₂ O ₄ /Ni foam	188	76	This work	
NiCo-(MoO ₄) ²⁻ /CFC	315	113.6	3	
bare CFC	558	344.8		
CF	352	130	11	
Ni/CF	400	167		
Ni ₃ S ₂ /NF	318	74	12	
Cu ₃ P/CF (0.1 M KOH)	222	148	13	
CF (0.1 M KOH)	521	184		
CoP/CC	209	129	14	
Mo ₂ C/XC72	229	74.5	15	
Mo ₂ C/C	165	165 63.6		
CoNi@NC	142	104	16	
FeP NAs/CC	218	146	17	
Cu ₃ P NW/CF	143	67	18	
Co ₂ P nanorods	~152	171	19	

 $NiFe_2O_4/Ni$ foam and $NCNT/Ni-NiMn_2O_4/Ni$ foam with other HER electrocatalysts

Table	S3 .	Comparison	of ORR	performance	in	alkaline	medium	for	NCNT/Ni-
NiMn	$_{2}O_{4}$ w	vith other ORI	R electroc	atalysts					

Catalysts	Catalyst Loading (mg cm ⁻²)	Half-wave potential (V vs RHE)	Ref.
NCNT/Ni-NiMn ₂ O ₄	0.208	0.71	This work
Au@Zn-Fe-C	71.5 μg_{Au} cm ⁻²	0.70	20
NGPC-800-5	0.102	0.55	21
NGPC-900-5	0.102	0.67	21
NCNTs-20	0.570	0.62	22
N:C-MgNTA	0.153	0.75	23
AG	1.00	0.66	24
N-graphene	0.038	0.67	25
NG-800	0.034	0.68	26
HNCNSs-800	0.153	0.69	27
NG	0.04	0.71	28
N-CDs/G	0.05	0.71	29

References:

- L. Ma, W. Zhang, P. Zhao, J. Liang, Y. Hu, G. Zhu, R. Chen, Z. Tie, J. Liu and Z. Jin, J. Mater. Chem. A, 2018, 6, 20076-20082.
- X. Shi, A. Wu, H. Yan, L. Zhang, C. Tian, L. Wang and H. Fu, *J. Mater. Chem. A*, 2018, 6, 20100-20109.
- L. Hang, T. Zhang, Y. Sun, D. Men, X. Lyu, Q. Zhang, W. Cai and Y. Li, J. Mater. Chem. A, 2018, 6, 19555-19562.
- 4. S. Oh, H. Kim, Y. Kwon, M. Kim, E. Cho and H. Kwon, *J. Mater. Chem. A*, 2016, 4, 18272-18277.
- M. Al-Mamun, Y. Wang, P. Liu, Y. L. Zhong, H. Yin, X. Su, H. Zhang, H. Yang, D. Wang, Z. Tang and H. Zhao, *J. Mater. Chem. A*, 2016, 4, 18314-18321.
- 6. S. Ma, Q. Zhu, L. Chen, W. Wang and D. Chen, J. Mater. Chem. A, 2016, 4, 8149-8154.
- C.-Z. Yuan, Y.-F. Jiang, Z. Wang, X. Xie, Z.-K. Yang, A. B. Yousaf and A.-W. Xu, J. Mater. Chem. A, 2016, 4, 8155-8160.
- C.-H. Liu, Y.-J. Tang, X.-L. Wang, W. Huang, S.-L. Li, L.-Z. Dong and Y.-Q. Lan, J. Mater. Chem. A, 2016, 4, 18100-18106.
- 9. J. Su, G. Xia, R. Li, Y. Yang, J. Chen, R. Shi, P. Jiang and Q. Chen, *J. Mater. Chem. A*, 2016, **4**, 9204-9212.
- Y. Fang, X. Li, S. Zhao, J. Wu, F. Li, M. Tian, X. Long, J. Jin and J. Ma, *RSC Adv.*, 2016, 6, 80613-80620.
- 11. H. Yang, S. Luo, X. Li, S. Li, J. Jin and J. Ma, J. Mater. Chem. A, 2016, 4, 18499-18508.
- 12. P. Ganesan, A. Sivanantham and S. Shanmugam, J. Mater. Chem. A, 2016, 4, 16394-16402.
- C. C. Hou, Q. Q. Chen, C. J. Wang, F. Liang, Z. Lin, W. F. Fu and Y. Chen, ACS Appl. Mater. Interfaces, 2016, 8, 23037-23048.
- 14. J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- M. Qamar, A. Adam, B. Merzougui, A. Helal, O. Abdulhamid and M. N. Siddiqui, J. Mater. Chem. A, 2016, 4, 16225-16232.
- 16. J. Deng, P. Ren, D. Deng and X. Bao, Angew. Chem. Int. Ed., 2015, 54, 2100-2104.
- 17. Y. Liang, Q. Liu, A. M. Asiri, X. Sun and Y. Luo, ACS Catal., 2014, 4, 4065-4069.
- 18. J. Tian, Q. Liu, N. Cheng, A. M. Asiri and X. Sun, *Angew. Chem. Int. Ed.*, 2014, **53**, 9577-9581.
- Z. Huang, Z. Chen, Z. Chen, C. Lv, M. G. Humphrey and C. Zhang, *Nano Energy*, 2014, 9, 373-382.
- J. Lu, W. Zhou, L. Wang, J. Jia, Y. Ke, L. Yang, K. Zhou, X. Liu, Z. Tang, L. Li and S. Chen, ACS Catal., 2016, 6, 1045-1053.
- L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian, Y. Zhou, W. Li and M. Hong, *Nanoscale*, 2014, 6, 6590-6602.
- 22. P. Su, H. Xiao, J. Zhao, Y. Yao, Z. Shao, C. Li and Q. Yang, Chem. Sci., 2013, 4, 2941.
- D. Eisenberg, W. Stroek, N. J. Geels, C. S. Sandu, A. Heller, N. Yan and G. Rothenberg, *Chem.*, 2016, 22, 501-505.
- 24. C. Zhang, R. Hao, H. Liao and Y. Hou, *Nano Energy*, 2013, 2, 88-97.
- 25. Q. Liangti, L. Yong, B. Jong-Beom and D. J. A. N. Liming, ACS Nano, 2010, 4, 1321-

1326.

- 26. A. Aijaz, N. Fujiwara and Q. Xu, J. Am. Chem. Soc., 2014, 136, 6790-6793.
- L. Wang, S. Dou, J. Xu, H. K. Liu, S. Wang, J. Ma and S. X. Dou, *Chem. Commun.*, 2015, 51, 11791-11794.
- 28. Z. H. Sheng, L. Shao, J. J. Chen, W. J. Bao, F. B. Wang and X. H. J. A. N. Xia, *ACS Nano*, 2011, **5**, 4350.
- 29. C. Hu, C. Yu, M. Li, X. Wang, Q. Dong, G. Wang and J. Qiu, *Chem. Commun.*, 2015, **51**, 3419-3422.