Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

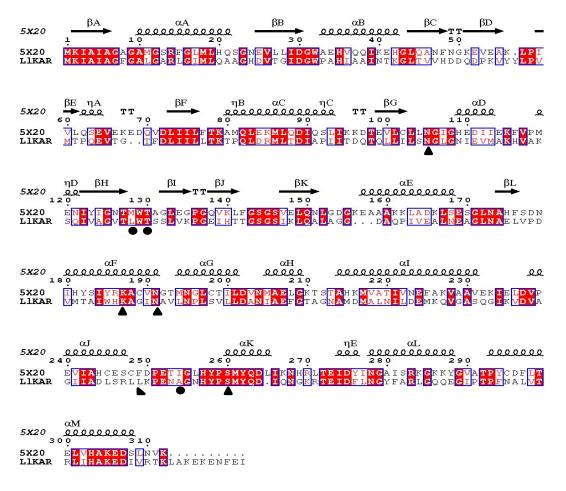
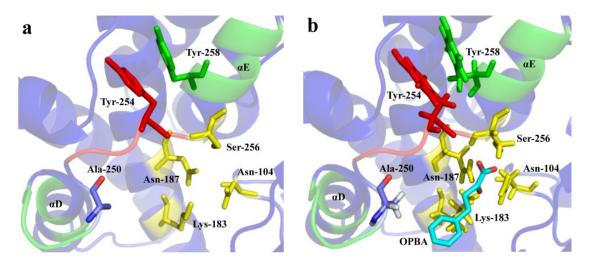

Round	Primer name	Nucleotide sequence		
First-round	L127-F	GTGTTACC <u>NNN</u> TGGACCTCTTCTCTGG		
	L127-R	GAGGTCCA <u>NNN</u> GGTAACACCAGCAAC		
	T129-F	CCCTGTGG <u>NNN</u> TCTTCTCTGGTTA		
	T129-R	CAGAGAAGA <u>NNN</u> CCACAGGGTAAC		
	L244-F	CTGTCTCGT <u>NNN</u> CTGAAACCGG		
	L244-R	GTTTCAG <u>NNN</u> ACGAGACAGGTCAG		
	A250-F	GAAAAC <u>NNN</u> GGTAACCACTACCCG		
	A250-R	GTTACC <u>NNN</u> GTTTTCCGGTTTCAG		
	L245-F	CGTGGT <u>NNN</u> AAACCGGAAAAC		
	L245-R	CGGTTT <u>NNN</u> ACCACGAGACAG		
Second-round	L127I-F	GGTGTTACC <u>ATT</u> TGGACCTCTTCTCTGG		
	L127I-R	GAGGTCCA <u>AAT</u> GGTAACACCAGCAAC		
	L244G-F	GTCTCGT <u>GGT</u> CTGAAACCGG		
	L244G-R	GTTTCAG <u>ACC</u> ACGAGACAGGTC		
	A250G-F	GGAAAAC <u>GGT</u> GGTAACCACTAC		
	A250G-R	GTTACC <u>ACC</u> GTTTTCCGGTTTC		
Third-round	L245-F	CGTGGT <u>NNN</u> AAACCGGAAAAC		
	L245-R	CGGTTT <u>NNN</u> ACCACGAGACAG		
	L245R-F	CGTGGT <u>CCG</u> AAACCGGAAAAC		
	L245R-R	CGGTTT <u>CGG</u> ACCACGAGACAG		

Table.S1 all of the PCR primers used for construction of mutants


Table S2 Comparison of Asymmetric reduction of OPBA to (R)-HPBA through bio-

Enzyme	Product (mM)	Productivity (mM∙h⁻¹)	ee _p (%)	references
D-LDH from Staphylococcus epiderimidis and FDH	182	38.2	>99	[3]
D-LDH (EC 1.1.1.28) and FDH	56.7	49.9	No report	[26]
YiaE from <i>E. Coli</i> K12 and GDH	100	4.2	98	[27]
LDH from <i>Lactobacillus</i> <i>bulgaricus</i> and FDH	71.8	47.9	>99	[28]
D-MDH from <i>Enterococcus faecali</i> and GDH	224	85.7	>99	This study

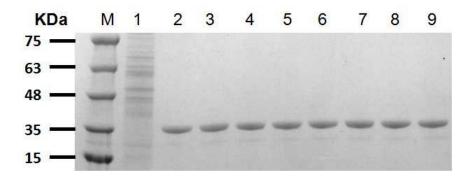

reduction with the reported works

Figure S1. Structure-related sequence alignment between *LI*KAR and its close homologue: D-mandelate dehydrogenases (D-MDH) from *Leuconostoc lactis*. The homologue of LIKAR, D-mandelate dehydrogenases (D-MDH) with a PDB code of 5X20, 3WFI and 3WFJ, was identified by performing a BLASTP search, and the alignment was carried out using the program ClustalW. The sequence alignment was subsequently visualized using ESPript 3.2. Above the alignments are elements of the secondary structure of 5X20. The numbering shown is from 5X20. Triangles, critical coenzyme binding residues; stars, putative catalytic residues located at the corresponding positions of the conserved catalytic residues Asn104, Asn183, and Glu263. Strictly conserved residues are highlighted with red boxes.

Figure S2. The clear spatial structure of the *LI*KAR catalytic and binding pocket. (a) The catalytic tetrad, Asn187, Lys183, and Ser256 are shown in yellow sticks. And the hydrophilic domains are shown in green and red cartoon; (b) the clear Spatial structure-activity relationship between α -helices and loop α D- α E. OPBA are shown as cyans sticks. All of the α -helices, β -sheets and loops are shown in blue cartoon.

Figure S3 SDS-PAGE analysis of the wild-type *LI*KAR and its mutants. 10 μL sample which contained approximately 40 μg protein was loaded for each lane. Lane M: protein marker; Lane 1: the supernatant of the recombination *E.coli* BL21 (harboring pET-28b); Lane 2: the purified wild-type *LI*KAR; Lane 3: the purified mut-L127I; Lane 4: the purified mut-L244G; Lane 5: the purified mut-A250G; Lane 6: the purified mut-L127I/L244G; Lane 7: the purified mut-L127I/A250G; Lane 8: the purified mut-L244G/A250G; Lane 9: the purified mut-L244G/A250G/L245R.

References

- 3. E. Schmidt, O. Ghisalba, D. Gygax and G. Sedelmeier, Journal of Biotechnology, 1992, 24, 315-327.
- 26. Y. Bai and S. T. Yang, Biotechnology and Bioengineering, 2005, 92, 137-146.
- 27. H. Yun, H. L. Choi, N. W. Fadnavis and B. G. Kim, Biotechnology Progress, 2005, 21, 366-371.
- 28. B. Sheng, Z. Zheng, M. Lv, H. Zhang, T. Qin, C. Gao, C. Ma and P. Xu, PloS One, 2014, 9, e104204-e104209.