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S.1. Bulk structural and Lewis acid site characterization of Sn-Beta zeolites 

 

 
 
Figure S.1. Powder XRD patterns of Sn-Beta samples studied in this work. 
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Figure S.2. N2 adsorption isotherms (77 K) of Sn-Beta samples studied in this work. Isotherms 
are offset by 200 cm3 g-1 for clarity. 
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Figure S.3. Tauc plots of Sn-Beta samples studied in this work after treatment in flowing He at 
523 K for 1800 s. Edge energies are summarized in Table 1. 
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Figure S.4. Dehydrated UV-Vis spectra (523 K, 1800 s) of Sn-Beta samples studied in this 
work. 
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Figure S.5. IR spectra collected on CD3CN-saturated Sn-Beta samples studied in this work. 
Spectra were normalized by combination and overtone modes for Si-O—Si stretches prior to the 
subtraction of spectra collected before CDCN adsorption. Dashed lines are drawn at 2308 cm-1 
(CD3CN bound to closed Sn), 2316 cm-1 (CD3CN bound to open Sn), and 2275 cm-1 (CD3CN 
bound to silanols). 
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Figure S.6. Vapor-phase water adsorption isotherms (293 K) on Sn-Beta samples studied in this 
work. Isotherms are offset by 100 cm3 g-1 for clarity. 
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Figure S.7. Vapor-phase methanol adsorption isotherms (293 K) on Sn-Beta samples studied in 
this work. Isotherms are offset by 100 cm3 g-1 for clarity. 
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S.2. Rate constant and free energy measurements on Sn-Beta samples 

 Apparent first-order glucose-fructose isomerization rate constants (1-10 wt% glucose) 

measured on Sn-Beta samples free energy differences between 1,2-hydride shift transition states 

and two water molecules bound to the Lewis acidic Sn site, the most abundant reactive 

intermediate (MARI) under aqueous-phase operating conditions [1]. The ~3x difference in first-

order rate constants (normalized per open Sn site) reflect small free energy differences (~3 kJ 

mol-1) between the kinetically-relevant transition state and the reference state comprising two 

bound water ligands at the Sn site. Thus, activation and deactivation phenomena reflect free 

energy decreases and increases, respectively, which are distinct from the 3 kJ mol-1 differences 

between individual samples. 
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S.3. Bulk characterization of Sn-Beta-F-116 after controlled hot (373 K) water exposure 

 

 
 
Figure S.8. Powder XRD patterns of Sn-Beta-F-116 samples after various (0-24 h) amounts of 
hot (373 K) water exposure time. 
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Figure S.9. N2 adsorption isotherms (77 K) of Sn-Beta-F-116 after 0 (diamond), 0.5 (circle), 3 
(square), and 24 h (triangle) of hot (373 K) water exposure time. 
 
 
 

 
 

Figure S.10. SEM images of Sn-Beta-F-116 (a) before and (b) after 24 h of hot (373 K) water 
exposure time. 
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Figure S.11. Sn density (A), Lewis acidic Sn fraction (B), and SnOx fraction (C) on Sn-Beta-F-
116 as a function of liquid water exposure time. Site densities on untreated materials are plotted 
at 1 min of water exposure. 
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Figure S.12. Tauc plots collected after treatment in flowing He at 523 K for 1800 s on Sn-Beta 
samples after various (0-24 h) amounts of hot (373 K) water exposure time. 
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Figure S.13. Dehydrated UV-Vis spectra (523 K, 1800 s) of Sn-Beta samples after various (0-24 
h) amounts of hot (373 K) water exposure time. 
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Figure S.14. Open ( ) and closed Sn density ( ) per mol Lewis acidic Sn on Sn-Beta-F-116 as a 
function of liquid water exposure time. Site densities on untreated materials are plotted at 1 min 
of water exposure. 
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S.4. Bulk characterization of Sn-Beta-F-100 after NMe4OH treatment 
 

 
 
Figure S.15. Powder XRD patterns of Sn-Beta-F-100 samples before and after NMe4OH 
treatment. 
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Figure S.16. IR spectra collected on CD3CN-saturated Sn-Beta-F-100 samples before and after 
NMe4OH treatment. Spectra were normalized by combination and overtone modes for Si-O—Si 
stretches prior to the subtraction of spectra collected before CDCN adsorption. Dashed lines are 
drawn at 2308 cm-1 (CD3CN bound to closed Sn), 2316 cm-1 (CD3CN bound to open Sn), and 
2275 cm-1 (CD3CN bound to silanols). 
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S.5. Supplemental figures on kinetic and mechanistic details of activation and fructose 
formation on Sn-Beta samples 

 

 
 

Figure S.17. Water uptakes at P/P0 = 0.2 (373 K) after rigorously subtracting off two water 
molecules per Lewis acid site counted from CD3CN titration plotted against bulk silanol defect 
density from CD3CN titration measurements. The solid line is a best fit line forced through the 
origin to guide the eye. 
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Figure S.18. Measured first-order glucose isomerization rates (per Lewis acidic Ti, 373 K) on 
Ti-Beta-F-155 after hot (373 K) liquid water exposure (0-24 h). Characterization data on Ti-
Beta-F-155 is reported in Ref. [2]. 
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Figure S.19. Observed activation extents (373 K, 1 wt%) as a function of initial open Sn density 
on Sn-Beta-F (closed) and Sn-Beta-OH (open) zeolites. Observed activation extents are defined 
as the ratio of the highest measured first-order glucose isomerization rate constant per sample 
normalized by the measured first-order rate constant on the unexposed Sn-Beta sample. 
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Figure S.20. Observed activation extents (373 K, 1 wt%) as a function of initial closed Sn 
density on Sn-Beta-F (closed) and Sn-Beta-OH (open) zeolites. Observed activation extents are 
defined as the ratio of the highest measured first-order glucose isomerization rate constant per 
sample normalized by the measured first-order rate constant on the unexposed Sn-Beta sample. 
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Figure S.21. Observed activation extents (373 K, 1 wt%) as a function of initial initial open-to-
closed ratio on Sn-Beta-F (closed) and Sn-Beta-OH (open) zeolites. Observed activation extents 
are defined as the ratio of the highest measured first-order glucose isomerization rate constant 
per sample normalized by the measured first-order rate constant on the unexposed Sn-Beta 
sample. 
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Figure S.22. Observed activation extents (373 K, 1 wt%) as a function of initial Lewis acidic Sn 
density on Sn-Beta-F (closed) and Sn-Beta-OH (open) zeolites. Observed activation extents are 
defined as the ratio of the highest measured first-order glucose isomerization rate constant per 
sample normalized by the measured first-order rate constant on the unexposed Sn-Beta sample. 
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Figure S.23. Observed activation extents (373 K, 1 wt%) as a function of initial SnOx density on 
Sn-Beta-F (closed) and Sn-Beta-OH (open) zeolites. Observed activation extents are defined as 
the ratio of the highest measured first-order glucose isomerization rate constant per sample 
normalized by the measured first-order rate constant on the unexposed Sn-Beta sample. 
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Figure S.24. Solution-phase 1H NMR of fructose products formed after contacting 1 wt% 
glucose solutions (373 K) with Sn-Beta-F samples. A fructose standard is given for direct 
comparison. 
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