Electronic Supplementary Information

Sulfate Promotion of Selective Catalytic Reduction of Nitric Oxide by Ammonia on Ceria

Linxiao Chen, Vaibhav Agrawal,[†] and Steven L. Tait*

Dept. of Chemistry, Indiana University, Bloomington, Indiana 47405, U. S. A.

* E-mail: <u>tait@indiana.edu</u>, Tel.: +1-812-855-1302

[†] Present address: Indian Institute of Technology, Roorkee, India

Figure S1. DRIFT spectra of room temperature NH₃ adsorption on fresh 2-PSA/CeO₂ (before O₂ activation) and bare CeO₂. The absence of any NH₃ adsorption peaks (*NH₃ or *NH₄⁺) suggests that the Lewis acid sites from CeO₂ and Brønsted acid sites from 2-PSA are consumed.

Figure S2. Structure of four organic S precursors used in this work: (a) 2-pyridinesulfonic acid (2-PSA), (b) 3-pyridinesulfonic acid (3-PSA), (c) benzenesulfonic acid (BSA), and (d) methanesulfonic acid (MSA).

-					
	Catalyst	N : Ce	S : Ce	N 1s BE (eV)	S 2 <i>p</i> BE (eV)
	3-PSA/CeO ₂	0.016	0.016	399.6	168.4
	BSA/CeO ₂	N/A	0.024	N/A	168.9
	MSA/CeO ₂	N/A	0.036	N/A	168.9

Table S1. XPS characterizations of sulfated CeO₂ from other S precursors.

Species	Corresponding IR features	Notes	
Carbonates (*CO ₃)	$1200 - 1700 \text{ cm}^{-1}$		
*CO	Around 2000 cm ⁻¹	On sulfate-derived Lewis acid sites	
*NH3	1168 cm ⁻¹ , 1315 cm ⁻¹ (symm. bending) 1602 cm ⁻¹ (asymmetric bending) 3300 – 3600 cm ⁻¹ (stretching) 1355 cm ⁻¹ (negative)	Specific positions vary on different surfaces; the origin of the 1355 cm ⁻¹ negative feature is unclear	
*NH4 ⁺	1460 cm ⁻¹	Not present on all studied catalysts	
*NH ₂	1550 cm ⁻¹		
*NO	$1800 - 2000 \text{ cm}^{-1}$	Not present on all studied catalysts	
Nitrates (*NO3)	1596 cm ⁻¹ (bridging v_3 ') 1562 cm ⁻¹ (bidentate v_3 ') 1537 cm ⁻¹ (monodentate v_3 ') 1170 - 1300 cm ⁻¹ (v_3 '')	The v_3 " peak also splits based on binding configurations, but cannot be distinguished from each other	
*NO ₂	1616 cm ⁻¹		
Bidentate nitro (*O-N-O*)	1373 cm ⁻¹		
Nitrosyl (*NO ⁻)	1010 cm ⁻¹		
*NH2NO2	1535 cm ⁻¹ 1253 cm ⁻¹ 1120 cm ⁻¹	Intermediate from the L-H mechanism	

Table S2. Summary of adsorbed species and their corresponding IR features.

Figure S3. CO adsorption DRIFTS of bare CeO₂ (black) and activated 2-PSA/CeO₂ (red) after Ar purging. Carbonate peaks on CeO₂ are irreversible, and the CO_{ads} peak on 2-PSA/CeO₂ from new Lewis acid sites is reversible.

Figure S4. NH₃-SCR activities of reduced CeO₂ (R_CeO₂), oxidized CeO₂ (O_CeO₂), and Fe₂O₃ before and after sulfate deposition, showing the sulfate promotion effect on different surfaces. Apparent negative NO conversions under some conditions are due to NO generated from NH₃ oxidation. Sulfates were deposited with 2-PSA, then O₂ activation was performed.

Figure S5. DRIFT spectra of NH₃ adsorption on CeO₂ (black), 2-PSA/CeO₂ (red), and FeO_x/CeO₂ (blue) at 250 °C under 1000 ppm NH₃ in Ar at near-ambient pressure.

Figure S6. DRIFT spectra with Ar purging time immediately following 30 min NH₃ exposure at 250 °C to observe *NH₃ desorption from (a) CeO₂, (b) 2-PSA/CeO₂, and (c) FeO_x/CeO₂. From bottom to top: spectra were collected after 0, 1, 3, 5, 7, 9, 11, 15, and 20 min Ar purging. Peak area was integrated from 1120-1340 cm⁻¹ for each spectrum to calculate the relative concentrations in **Figure 5b**.

Figure S7. DRIFTS spectra with increasing Ar purging time following NO + O₂ exposure to observe NO_3/NO_2 desorption from (a) CeO₂, (b) 2-PSA/CeO₂, and (c) FeO_x/CeO₂. From bottom to top, spectra were collected after 0, 1, 3, 5, 7, 9, 11, 15, 20, 30, 40, 50, and 60 min Ar purging. Peak area from 1400-1700 cm⁻¹ was integrated to calculate the relative concentrations presented in **Figure 6b**.

Figure S8. NO-first transient experiment on bare CeO₂. (a) DRIFTS spectra collected with NH₃ exposure time; from bottom to top, spectra were collected after 0, 1, 3, 5, 7, 9, 11, 15, 20, 30, 40, 50, and 60 min NH₃ exposure. (b) Comparison of the concentration (relative to initial concentration) of *NO₃ and *NO₂ remaining on bare CeO₂ surface when reacting with NH₃ (blue) and desorbing under Ar (red), calculated by integrating the region 1400-1700 cm⁻¹ in (a) and **Figure S7a**, respectively.

Figure S9. NH₃-first transient experiment on 2-PSA/CeO₂. (a) Comparison of the concentration (relative to initial concentration) of *NH₃ on the 2-PSA/CeO₂ surface for reaction with NO + O₂ (blue) or desorption under Ar (red), calculated by integration from 1120-1340 cm⁻¹ of the spectra in **Figure 9a** and **S6b**, respectively. NH₃ desorbs faster when reacting with NO + O₂ than when desorbing under Ar. (b) Comparison of concentration (relative to saturation concentration) of *NO₃ and *NO₂ on NH₃-covered 2-PSA/CeO₂ (blue) and on clean 2-PSA/CeO₂ (red), calculated by integration from 1400-1700 cm⁻¹ of **Figure 9a** and **S12a**, respectively. NO-derived adsorbates are formed more slowly on the *NH₃-covered surface (blue) than on the clean 2-PSA/CeO₂ surface (red).

Figure S10. NH₃-first transient experiment on FeO_x/CeO₂. (a) Concentration (relative to initial concentration) of *NH₃ on FeO_x/CeO₂ surface showing it desorbs faster when reacting with NO + O₂ (blue) than simply desorbing under Ar (red). Concentrations calculated from integrated area 1120-1340 cm⁻¹ of **Figure 9b** and **S6c**, respectively. (b) Concentration (relative to saturation concentration) of *NO₃ and *NO₂ on FeO_x/CeO₂ surface. NO-derived adsorbates are formed more slowly on the *NH₃-covered surface (blue) than on the clean FeO_x /CeO₂ surface (red). Concentrations calculated by integration from 1400-1700 cm⁻¹ of **Figure 9b** and **S12b**, respectively.

Figure S11. DRIFT spectra collected under actual NH₃-SCR reaction conditions (500 ppm NH₃, 500 ppm NO, 8% O₂, balanced by Ar and N₂) at 250 °C and 300 °C, showing surface adsorbates at steady-state conditions.

Figure S12. DRIFT spectra with increasing NO + O_2 exposure time to observe *NO₃ and *NO₂ adsorption on (a) 2-PSA/CeO₂ and (b) FeO_x/CeO₂. From bottom to top, spectra were collected after 0, 2, 4, 6, 8, 10, 15, 20, 25, and 30 min NO + O_2 exposure. Peak area from 1400-1700 cm⁻¹ was integrated to calculate the relative concentrations presented in **Figures S9b** and **S10b**.

Figure S13. Comparison of Ce 3d XP spectra of bare CeO₂ and activated 2-PSA/CeO₂. There is no significant difference between these spectra. Although there is likely to be some change in the Ce³⁺/Ce⁴⁺ ratio at the surface, this was not detectable in this measurement, likely due to the large background signal from multiple layers of CeO₂.

Pretreatment conditions

Pretreatment of FeO_x/CeO₂ was made using 10% O₂ at 400 °C for 30 min. This is the standard procedure we have been implementing for the purpose of cleaning surfaces. We used slightly different conditions for 2-PSA/CeO₂, 8% O₂ at 350 °C for 30 min, because that is the highest temperature and O₂ concentration it experiences during the SCR experiments. Initially the reaction was performed without this step, and after 30 min at 350 °C, 2-PSA/CeO₂ catalyst reached full activity, which justifies the choice of this condition. The slight difference between these conditions may have some small impact on surface oxygen species, however, these will be much more significantly impacted by the difference in surface oxygen species due to impregnation of FeO_x or 2-PSA. Changes in surface oxygen after promoter impregnation highlights an advantage of sulfate over FeO_x: it partially deactivates surface-active oxygen while FeO_x does not.