Supporting Information

Enhanced soot oxidation activity over CuO/CeO₂ mesoporous nanosheets

Shuaifeng Yang¹, Jinguo Wang^{1*}, Wei Chai², Jian Zhu³, Yong Men¹

¹College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China

²Department of Chemical Engineering, Zaozhuang Vocational College, ZaoZhuang 277800, P. R. China

³The Education Ministry Key Lab of Resource Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China

*Author to whom correspondence should be addressed. E-mail address: Jinguowang1982@sues.edu.cn, Tel: +86-21 6787 4046

Fig. S1 Schematic flowing chart of the reaction system for soot oxidation.

Fig. S2 N_2 adsorption-desorption isotherms, FESEM image (inset) and elemental compositions (inset) of pure soot (MA100 Mitsubishi, Japan).

Fig. S3 FESEM image of crushed CuCe7.2.

Fig. S4 Soot oxidation efficiency for pure soot without catalysts.

Fig. S5 N_2 adsorption-desorption isotherms of CuCe7.2-600 (a) and catalytic performances of CuCe7.2-600 and CuCe9.5 (b).

Fig. S6 Catalytic performances of crushed CuCe7.2 for soot oxidation.

Fig. S7 Effect of feed composition on soot oxidation activity of crushed CuCe7.2.

Fig. S8 Effect of contact mode on soot oxidation activity over CuCe7.2.

Fig. S9 Stability test of CuCe7.2 for soot oxidation.

Fig. S10 XRD pattern and FESEM image of CuCe7.2 after the 6th recycle.