ELECTRONIC SUPPLEMENTARY INFORMATION

Ultra high sensitivity of luminescent ZnCr₂O₄ nanoparticles toward aromatic nitro explosives sensing

Debamalya Ghosh^{1,2}, Uma Dutta¹, Ariful Haque¹, Natalia E. Mordvinova³, Oleg I. Lebedev³, Kamalesh Pal², Arup Gayen², Md. Motin Seikh^{1,*} and Partha Mahata^{2,*}

¹Department of Chemistry, Visva-Bharati University, Santiniketan, West Bengal –731235,

India

²Department of Chemistry, Jadavpur University, Kolkata– 700032, India ³Laboratoire CRISMAT, ENSICAEN UMR6508, 6 Bd Maréchal Juin, Cedex 4, Caen-14050,

France

Figure S1: Representative EDX plot of $ZnCr_2O_4$, which confirms the presence of metal cations as per the nominal composition of 1:2 (Zn:Cr).

.Figure S2: UV absorption spectra of aqueous suspended ZnCr₂O₄

Figure S3: Emission spectrum of $ZnCr_2O_4$ suspended in water ($\lambda_{ex} = 260$ nm).

Figure S4: Emission spectra of $ZnCr_2O_4$ suspended in water upon incremental addition of DNP solution (λ_{ex} = 260 nm). The final concentration of DNP in the medium is indicated in the legend.

Figure S5: Emission spectra of $ZnCr_2O_4$ suspended in water upon incremental addition of DNT solution ($\lambda_{ex} = 260$ nm). The final concentration of DNT in the medium is indicated in the legend.

Figure S6: Emission spectra of $ZnCr_2O_4$ suspended in water upon incremental addition of DNB solution ($\lambda_{ex} = 260$ nm). The final concentration of DNB in the medium is indicated in the legend.

Figure S7: Emission spectra of $ZnCr_2O_4$ suspended in water upon incremental addition of NB solution ($\lambda_{ex} = 260$ nm). The final concentration of NB in the medium is indicated in the legend.

Figure S8: Emission spectra of $ZnCr_2O_4$ suspended in water upon incremental addition of NT solution ($\lambda_{ex} = 260$ nm). The final concentration of NT in the medium is indicated in the legend.

Figure S9: Emission spectra of $ZnCr_2O_4$ suspended in water upon incremental addition of Benzene solution (λ_{ex} = 260 nm). The final concentration of Benzene in the medium is indicated in the legend.

Figure S10: Emission spectrum of ZnO suspended in water ($\lambda_{ex} = 260$ nm). This spectrum is collected using PerkinElmer LS-55 spectrofluorometer.

Figure S11: Emission spectra of ZnO suspended in water upon incremental addition of TNP solution (λ_{ex} = 260 nm). The final concentration of TNP in the medium is indicated in the legend.

Figure S12: Emission spectra of ZnO suspended in water upon incremental addition of DNP solution (λ_{ex} = 260 nm). The final concentration of DNP in the medium is indicated in the legend.

Figure S13: Emission spectra of ZnO suspended in water upon incremental addition of DNT solution (λ_{ex} = 260 nm). The final concentration of DNT in the medium is indicated in the legend.

Figure S14: Emission spectra of ZnO suspended in water upon incremental addition of DNB solution (λ_{ex} = 260 nm). The final concentration of DNB in the medium is indicated in the legend.

Figure S15: Emission spectra of ZnO suspended in water upon incremental addition of NB solution (λ_{ex} = 260 nm). The final concentration of NB in the medium is indicated in the legend.

Figure S16: Emission spectra of ZnO suspended in water upon incremental addition of Benzene solution (λ_{ex} = 260 nm). The final concentration of Benzene in the medium is indicated in the legend.

Figure S17: Percentage of quenching in presence analytes with 50 μ M concentration for ZnCr₂O₄ and ZnO.

Figure S18: Plot of changes of luminescence intensity of nano-sized $ZnCr_2O_4(at 410 \text{ nm})$ vs concentration of TNP indicating the detection limit (where I₀ and I are luminescence intensity in the absence and in the presence of TNP, respectively).

Table S1: Result of optical gap calculation in gas phase using B3LYP/6-31+G(d) level of theory using Gaussian 16.

			· · · · · · · · · · · · · · · · · · ·	
Nitro-	HOMO (eV)	LUMO (eV)	$\Delta E = (E_{HOMO} -$	Peaks in experimental data of
aromatics			E _{LUMO)}	absorption spectra
TNP	-8.67645	-4.37509	-4.30136	2.92, 3.39 and 5.48
DNP	-8.00572	-3.77103	-4.23469	3.1, 3.47, 4.78, 5.46, 5.84
DNT	-8.42067	-3.42220	-4.99847	4.94
NT	-7.65498	-2.79092	-4.86406	4.36, 5.71
DNB	-8.73060	-3.59661	-5.13399	5.12
NB	-7.88709	-2.91310	-4.97399	4.64, 5.84