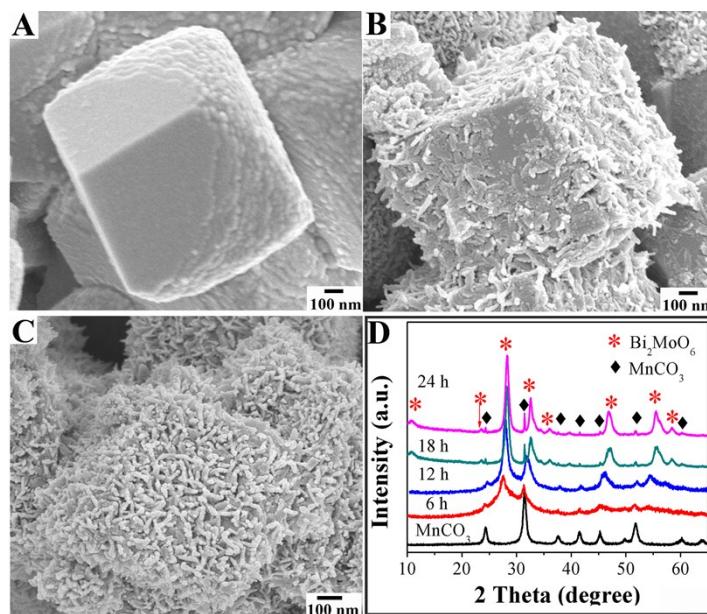


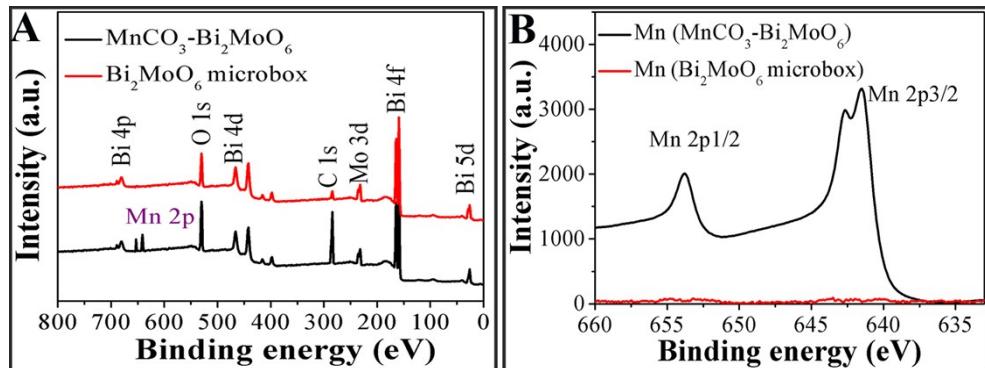
Supporting Information for

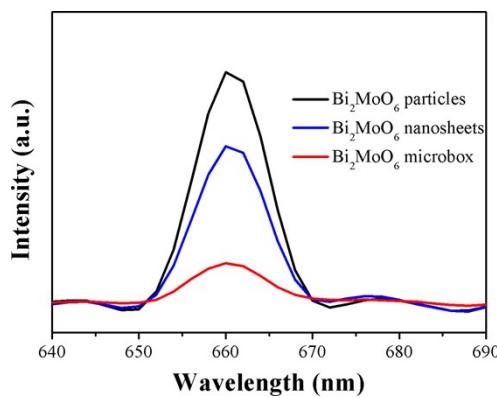

Hierarchical nanosheet-based Bi_2MoO_6 microboxes for efficient photocatalytic performance

Yulong Jia,^a Ying Ma,^{a,b*} Jinzhu Tang,^a Wenbin Shi^a

^a School of Chemistry and Chemical Engineering, Yangtze Normal University
Chongqing, 408000 (China)
Email: yma2017@126.com

^b Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan


Additional Figures and Discussions


Fig. S1. SEM images of intermediate samples collected at (A) 6 h (B) 12 h and (B) 18 h, and the XRD pattern of the samples (D).

As shown in Figure S1A, the surface of MnCO_3 microcube was covered with small nanoparticles when the reaction was conducted for 6 h (denoted as MB-6). Besides, in the corresponding XRD pattern, the diffraction peak at 28.3° attributed to the (131) crystal plane of Bi_2MoO_6 appears, and the diffraction peaks of MnCO_3 exhibit lower intensity and broader width than that of pure MnCO_3 microcube. It is thought that only small Bi_2MoO_6 nanoparticles with low crystallinity can be formed on the surface of MnCO_3 microcube at 6 h. With the time continued, these nanoparticles grew into small nanosheets which dispersed on the whole microcube surface (Fig. S1B). Furthermore, the anisotropic growth of Bi_2MoO_6 nanosheets led to interconnected nanosheets. More importantly, the intensity of Bi_2MoO_6 peaks of samples reacted for 12 h (MB-12) demonstrates significant increase with respect to the MB-6, resulting in the broad diffraction peaks indexed to the Bi_2MoO_6 and MnCO_3 . Interestingly, the sharp diffraction peaks can be easily distinguished and agree well with the Bi_2MoO_6 and MnCO_3 respectively in the XRD pattern of MB-18. As displayed in Fig. S1C, the well-defined hierarchical microbox consisting of microcube core and interconnected nanosheets can be clearly seen. It is well established that the Bi_2MoO_6 nanosheet grew in size with higher crystallinity

as increasing the reaction time.^{1,2} Finally, the nanosheet-built Bi_2MoO_6 shell with uniform and perfect structure on MnCO_3 microcube surface was developed as a result of the hydrothermal reaction for 24 h.

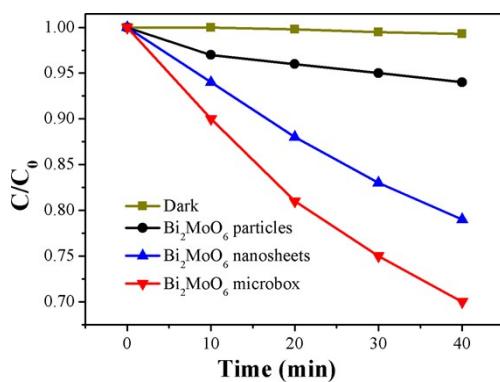


Fig. S2. XPS spectra of (A) survey and (B) Mn 2p of $\text{MnCO}_3\text{-Bi}_2\text{MoO}_6$ microcube and Bi_2MoO_6 microbox.

Fig. S3. Room temperature photoluminescence spectra of the samples with excitation wavelength at 440 nm.

Fig. S3 displays the PL spectra of Bi_2MoO_6 particles, Bi_2MoO_6 nanosheets and nanosheets-based Bi_2MoO_6 microbox, manifesting the charge recombination efficiency of photogenerated electrons and holes. The samples demonstrate emission peaks between 650-670 nm with an excitation wavelength of 440 nm. As typically, the weaker intensity of PL peak corresponds to the reduced electron-hole recombination and facilitated charge separation.^{3,4} It is clearly that the as-prepared hierarchical Bi_2MoO_6 microbox shows the weakest photoluminescence peak among the samples, indicating that the recombination of photogenerated charge carriers have been dramatically decreased by constructing the hierarchical microbox structure.⁵ It is confirmed that the nanosheets-built Bi_2MoO_6 microbox structure could greatly prevent the recombination of electrons and holes, thus leading to the excellent photocatalytic performance.

Fig. S4. Time-dependent photocatalytic degradation efficiency curve of phenol (50 mL, 10^{-4} mol/L) by different photocatalysts under visible-light irradiation.

Reference

- 1 H. Shirae, K. Hasegawa, H. Sugime, E. Yi, R.M. Laine, S. Noda, *Carbon*, **114**, 31–38.
- 2 A. Pei, G.Y. Zheng, F.F. Shi, Y.Z. Li, Y. Cui, *Nano Lett.*, 2017, **17**, 1132–1139.
- 3 X.X. Chang, T. Wang, P. Zhang, J.J. Zhang, A. Li, J.L. Gong, *J. Am. Chem. Soc.*, 2015, **137**, 8356–8359.
- 4 C.H. Zhao, W. Li, Y. Liang, Y. Tian, Q.Y. Zhang, *Appl. Catal. A: General*, 2016, **527**, 127–136.
- 5 Y. Hou, F. Zuo, A. Dagg, P.Y. Feng, *Angew. Chem.*, 2013, **125**, 1286–1290.