Supporting Information

Encapsulating CoS₂-CoSe₂ heterostructured nanocrystals in N-doped carbon nanocubes as highly efficient counter electrode for dye-sensitized solar cells

Shoushuang Huang, ^a Haitao Wang, ^a Shangdai Wang, ^a Zhangjun Hu, ^a Ling Zhou, ^b Zhiwen Chen, *^a Yong Jiang, ^a and Xuefeng Qian *^b

[a] Dr. S. S. Huang, Dr. Z. J. Hu, Dr. Y. Jiang, Prof. Z. W. Chen

School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China;

[b] Prof. X. F. Qian
Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites,
Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
E-mail: xfqian@sjtu.edu.cn;

Fig. S1 XRD pattern of the as-synthesized Co₃[Co(CN)₆]₂ PBA nanocubes.

Fig. S2 XRD pattern of the as-prepared CoS₂@NC (a), CoSe₂@NC (b) and CoS₂-CoSe₂@NC (c) nanocubes.

Fig. S3 Nitrogen adsorption/desorption isotherms (a) and pore size distribution of mesoporous CoS₂-CoSe₂@NC nanocubes (b).

Fig. S4 J-V curve of DSSCs with different thickness of CoS₂-CoSe₂@NC and Pt CEs.

Tab. S1 Photovoltaic performance of DSSCs with different thickness of CoS_2 - $CoSe_2@NC$
and Pt CEs.

CEs	V _{oc} [mV]	J _{sc} [mA/cm ²]	FF	η [%]
50 µL	0.697 ± 0.006	10.42 ± 0.15	0.49 ± 0.02	3.56 ± 0.14
100 µL	0.740 ± 0.005	16.35 ± 0.11	0.70 ± 0.01	8.45 ± 0.06
$200 \ \mu L$	0.748 ± 0.013	15.03 ± 0.10	0.64 ± 0.01	7.19 ± 0.11
Pt	0.749 ± 0.003	15.53 ± 0.12	0.69 ± 0.00	8.07 ± 0.07

Fig. S5 J-V curves of the DSSCs with CoSe₂, CoS₂ and Pt CEs, measured under AM1.5G illumination (100 mW cm⁻²).

Tab. S2 Photovoltaic performances of DSSCs with CoS₂, CoSe₂ and Pt CEs under AM1.5G illumination.

CEs	V _{oc} [V]	J _{sc} [mA/cm ²]	FF	η [%]
CoSe ₂	0.736 ± 0.007	14.52 ± 0.15	0.65 ± 0.00	6.95 ± 0.13
CoS_2	0.732 ± 0.008	14.17 ± 0.09	0.63 ± 0.01	6.54 ± 0.08
Pt	0.749 ± 0.003	15.53 ± 0.12	0.69 ± 0.00	8.07 ± 0.07

Fig. S6 (a) CV curves of the CoS_2 - $CoSe_2@NC$ nanocubes CE at different scan rate; (b) relationship between the peak current density and the square root of scanning rate of CoS_2 - $CoSe_2@NC$ nanocubes CEs.

Fig. S7 The equivalent circuit diagram used to fit the impedance spectra in the symmetrical cells (a) and the fitting curves of CoS_2 - $CoSe_2$ @NC (a), $CoSe_2$ @NC (b), CoS_2 @NC (c) and Pt (d) CEs.

CE	$ m R_s$ $\Omega~cm^2$	R_{ct} $\Omega \ cm^2$	CPE-T μF cm ⁻²	CPE-P	Ws-R $\Omega \ cm^2$	Ws-T	Ws-P
CoS ₂ -CoSe ₂ @NC	3.23	0.38	269.16	0.84	0.54	0.35	0.50
CoSe ₂ @NC	3.26	0.51	220.52	0.83	1.10	0.68	0.50
CoS ₂ @NC	3.23	0.59	217.94	0.86	1.18	0.54	0.50
Pt	3.20	0.45	112.62	0.95	0.83	0.42	0.50

Tab. S3 Fitted electrochemical parameters from EIS.

Fig. S8 Average potential profile along X-axis of (a) CoS_2 (001) and (b) $CoSe_2$ (100). The insert shows the calculated work function.

All of the density functional calculations were performed using the plane-wave pseudopotential method, implemented with the Cambridge Sequential Total Energy Package (CASTEP) code. The local density approximation (LDA) was used to describe the exchange-correlation effects. In order to obtain the work functions of CoS_2 and $CoSe_2$, two slab modules were created for the calculation. Both of the slabs consisted of a 30 Å vacuum layer and the surface cleaved for bulk material.¹⁻⁴ The atoms in the surface layer were fixed, while all other atoms were fully relaxed with force criteria of 0.025 eV/Å.

- J. W. Wan, G. J. Fang, H. J. Yin, X. F. Liu, D. Liu, M. T. Zhao, W. J. Ke, H. Tao and Z. Y. Tang, *Adv. Mater.*, 2014, 26, 8101-8106.
- Z. X. Qin, Y. B. Chen, Z. X. Huang, J. Z. Su, Z. D. Diao and L. J. Guo, J. Phys. Chem. C, 2016, 120, 14581-14589.
- 3. J. L. Zheng, W. Zhou, Y. R. Ma, W. Cao, C. B. Wang and L. Guo, *Chem. Commun.*, 2015, **51**, 12863-12866.
- 4. X. W. Wang, Y. Xie, B. Bateer, K. Pan, Y. T. Zhou, Y. Zhang, G. F. Wang, W. Zhou and H. G. Fu, *Nano Research*, 2016, **9**, 2862-2874.