Supporting information

Highly selective sensing of Fe³⁺ by an anionic metal–organic framework containing uncoordinated nitrogen and carboxylate oxygen sites

Chun-Hui Chen, ^{#a, b} Xu-Sheng Wang, ^{#b, c} Lan Li, ^b Yuan-Biao Huang ^{b*} & Rong Cao _{a, b, c*}

^a Department of Chemistry, University of Science and Technology of China,

Hefei, Anhui 230026, P. R. China.

^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.

^c University of the Chinese Academy of Sciences, Beijing, 100049, China.

[#]C.-H. Chen and X.-S. Wang contributed equally to this work.

1. Crystal description of FJI-C8

Fig. S1 (a) The coordination environment of ligand H_6L ; (b) The coordination environment of Zn_3O cluster and mono-zinc ion.

Fig. S2 TG of as synthesized and activated FJI-C8

The loss of guest molecules and $Me_2NH_2^+$ cations were started from room temperature to 400 °C concurrently. Then the structure compound starts to decompose.

Fig. S3 The N_2 sorption of FJI-C8.

2. Ions detection with FJI-C8 suspension

Table S1 Quenching effect coefficients (K_{sv}) of different metal ions detected by **FJI-C8** suspension sample.

No.	Metal ion	K_{sv} (M ⁻¹)
1	Sr ²⁺	176
2	Na ⁺	177
3	Ca ²⁺	212
4	Gd ³⁺	255
5	Zn ²⁺	260
6	Al ³⁺	336
7	Cd ²⁺	345
8	Mn ²⁺	400
9	Bi ³⁺	426
10	Ni ²⁺	435
11	K+	667
12	Mg^{2+}	886
13	Co ²⁺	1205
14	Cr ³⁺	1224
15	Cu ²⁺	2241
16	Fe ³⁺	8245

Table S2 Quenching effect coefficients (K_{sv}) of different anions detected by **FJI-C8** suspension sample.

No.	Anions	K_{sv} (M ⁻¹)
1	NO ₃ -	177
2	Br	194
3	ClO ₄ -	243
4	F-	300
5	I-	347
6	NO ₂ -	356

Fig. S4 Fluorescence spectra of **FJI-C8** suspended in DMF (2 mg/mL) upon incremental addition of $M(NO_3)_x$ (10 mM).

Fig. S5 S-V plot of FJI-C8 suspended in DMF (2 mg/mL) upon incremental addition of $M(NO_3)_x$ (10 mM).

Fig. S6 Fluorescence spectra of FJI-C8 suspended in DMF (a) 0.4 mg/mL, (b) 0.04 mg/mL upon incremental addition of $M(NO_3)_x$ (10 mM).

Fig. S7 S-V plot of **FJI-C8** suspended in DMF (a) 0.4 mg/mL, (b) 0.04 mg/mL upon incremental addition of $M(NO_3)_x$ (10 mM).

Table S3 Quenching effect coefficients (K_{sv}) of M(NO₃)_x effect on the luminescence intensity of molecule incorporated **FJI-C8** suspension sample.

No.	M(NO ₃) _x	K_{sv} (M ⁻¹)
1 ^a	Fe(NO ₃) ₃	8496
2	Cu(NO ₃) ₂	2055
3	Co(NO ₃) ₂	1242
4	Cr(NO ₃) ₃	1169
5	KNO3	883
6	Mg(NO ₃) ₂	666
7 ^b	Fe(NO ₃) ₃	9590
8 °	Fe(NO ₃) ₃	8240

a the concentration of FJI-C8 solution was 2mg/mL

b the concentration of FJI-C8 solution was 0.4mg/mL

c the concentration of FJI-C8 solution was 0.04 mg/mL

Fig. S8 Decrease in fluorescence intensity upon adding $M(NO_3)_x$ solution (1 mL stock suspension, 1 mL DMF, 10 μ L $M(NO_3)_x$ (1 M), and 10 μ L $Fe(NO_3)_3$ (1 M)).

Fig. S9 Time-dependent fluorescence quenching detections of $Fe(NO_3)_3$ (1 mL stock suspension, 1 mL DMF, and 0.1 mL analyte solution (10 mM)).

Fig. S10 Three quenching cycles of the FJI-C8 dispersed in DMF with the addition of $Fe(NO_3)_3$ solution (1 mL stock suspension, 1 mL DMF, and 0.1 mL analyte solution (10 mM)).

Standard deviation and detection limit calculation

To calculate the standard deviation and detection limit of this detection method, **FJI-C8** with fine particles was made into a 2 mg/mL suspension. Then, Fe(NO₃)₃ solution (1 mM, 10-100 μ L) was added into the suspension and the fluorescent intensities were recorded. Standard deviation (σ) was calculated from five blank tests of **FJI-C8** suspension and the detection limit was calculated via the formula: $3\sigma/m$ (m: the slope of the fitting line).

Table S4 Standard deviation calculation

Entry	Fluorescence intensity (×10 ⁶)
Test 1	1.437
Test 2	1.502
Test 3	1.488
Test 4	1.514
Test 5	1.467
Standard deviation (σ)	0.0272

Fig. S11 Linear curve of fluorescence intensity of FJI-C8 suspension upon incremental addition of Fe^{3+} (10 mM).

Table S5 Detection limit calculation for Fe³⁺.

Slope (m)	3.50×10 ⁶ mM ⁻¹
Detection limit $(3\sigma/m)$	0.0233 mM

3. Ions detection with FJI-C8 solid

Fig. S12 PXRD of metal ion incorporated **FJI-C8** (metal ion stands for K⁺, Hg²⁺, Co²⁺, Ba²⁺, Na⁺, Gd²⁺, Zn²⁺, Mg²⁺, Cr³⁺, Ni²⁺, Ca²⁺, Pb²⁺, Al³⁺, Sr²⁺, Bi³⁺, Mn²⁺, Cu²⁺, or Fe³⁺).

Fig. 13 The PXRD of anion incorporated **FJI-C8** (anion stands for F⁻, Br⁻, I⁻, NO₂⁻, NO₃⁻, ClO₄⁻).

No.	Metal ion	K_{sv}
1	K ⁺	7
2	Co ²⁺	18
3	Na ⁺	32
4	Gd^{2+}	44
5	Cd ²⁺	45
6	Zn ²⁺	47
7	Mg ²⁺	64
8	Cr ³⁺	72
9	Ni ²⁺	81
10	Ca ²⁺	82
11	Al ³⁺	87
12	Sr ²⁺	119
13	Bi ³⁺	121
14	Mn ²⁺	121
15	Cu ²⁺	143
16	Fe ³⁺	2188

Table S6 Quenching effect coefficients (K_{sv}) of different metal ions detected by **FJI-C8** solid sample.

Table S7 Quenching effect coefficients (K_{sv}) of different anions detected by **FJI-C8** solid sample.

No.	Anions	K _{sv}
1	F-	11
2	NO ₃ -	32
3	ClO ₄ -	46
4	NO ₂ -	52
5	Br	63
6	I-	88

Fig. S14 The emission intensity of FJI-C8 suspension after addition of M(NO₃)_x.

Fig. S15 Time-dependent fluorescence quenching detections of $Fe(NO_3)_3$ with FJI-C8 solid after filtration.

4. Detection mechanisms

Table S8 Integral orbital overlap J (λ) values of M(NO₃)_x absorption spectrum and **FJI-C8** emission spectrum.

No.	M(NO ₃) _x	J (λ)
1	Fe(NO ₃) ₃	10.56
2	Cu(NO ₃) ₂	<0.1
3	Co(NO ₃) ₂	<0.1
4	Cr(NO ₃) ₃	<0.1
5	KNO3	<0.1
6	Mg(NO ₃) ₂	<0.1

Table S9 Integral orbital overlap J (λ) values of M(NO₃)_x absorption spectrum and **FJI-C8** excitation spectrum.

No.	M(NO ₃) _x	J (λ)
1	Fe(NO ₃) ₃	37.53
2	Cu(NO ₃) ₂	4.79
3	Co(NO ₃) ₂	2.17
4	Cr(NO ₃) ₃	<0.1
5	KNO3	<0.1
6	Mg(NO ₃) ₂	<0.1

TCSPC Study

Fig. S16 Fluorescence lifetime decay profile of FJI-C8 before and after adding of $Fe(NO_3)_3$.

Fable S10 Fluorescence	life time	data for	FJI-C8	with Fe(NO ₃) ₃ .
-------------------------------	-----------	----------	--------	--

Adding amount	$\tau_1[ns]$	α_1	$\tau_2[ns]$	α2	$\tau_{av}[ns]$
0 µL	3.28	44.47	7.62	55.53	5.69
100 µL	3.34	47.25	8.17	52.75	5.89
200 µL	3.15	48.68	8.80	51.32	6.05

MOE	Concentration	Sensitivity	Selectivity	Dof
WICH	of suspension	(mM)	(M ⁻¹)	NCI.
UMCM-1	0.2 mg/mL			1
UMCM-1-NH ₂	0.2 mg/mL			1
La-MOF	0.25 mg/mL		13600	2
NNU-1	1.7 mg/mL	0.2		3
Eu ₄ L ₃	1.5 mg/mL		2942	4
{[Tb(L)(DMA)]·(DMA)·(0.5H 2O)}	0.2 mg/mL		1913	5
$[(CH_3)_2NH_2]\cdot[Tb(bptc)]$	0.8 mg/mL	0.1801		6
BUT-14	0.33 mg/mL	0.0038	2170	7
BUT-15	0.33 mg/mL	0.0003	16600	7
FJI-C8	0.04 mg/mL	0.0233	8245	This work

 Table S11 Summary of the chemosensor suspension concentration for metal ions detection detection.

- 1. Z. Xiang, C. Fang, S. Leng and D. Cao, J. Mater. Chem. A, 2014, 2, 7662.
- 2. C. Zhang, Y. Yan, Q. Pan, L. Sun, H. He, Y. Liu, Z. Liang and J. Li, *Dalton Trans*, 2015, **44**, 13340-13346.
- 3. B. L. Hou, D. Tian, J. Liu, L. Z. Dong, S. L. Li, D. S. Li and Y. Q. Lan, *Inorg. Chem.*, 2016, **55**, 10580-10586.
- 4. W. Liu, X. Huang, C. Xu, C. Chen, L. Yang, W. Dou, W. Chen, H. Yang and W. Liu, *Chem. Eur. J.*, 2016, **22**, 18769-18776.
- 5. S. Pal and P. K. Bharadwaj, Cryst. Growth Des., 2016, 16, 5852-5858.
- X. L. Zhao, D. Tian, Q. Gao, H. W. Sun, J. Xu and X. H. Bu, *Dalton Trans*, 2016, 45, 1040-1046.
- 7. B. Wang, Q. Yang, C. Guo, Y. Sun, L. H. Xie and J. R. Li, ACS Appl. Mater. Inter., 2017, 9, 10286-10295.

Ref.