## ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

## Sulfur-Containing Bimetallic Metal Organic Frameworks with Multi-Fold Helix as Anode of Lithium Ion Batteries

Meng-Ting Li,<sup>a+</sup> Ning Kong, <sup>a+</sup> Ya-Qian Lan<sup>b\*</sup> and Zhong-Min Su<sup>a\*</sup>

<sup>a</sup> Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024 Jilin, People's Republic of China. E-mail: zmsu@nenu.edu.cn

<sup>b</sup>School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China. E-mail: yqlan@njnu.edu.cn



Fig. S1 FT-IR spectra of Fe<sub>2</sub>Co-TPDC. IR (KBr, cm<sup>-1</sup>): 1668s, 1527s, 1371s, 1105m, 1022w, 771s, 681m.



**Fig. S2** The TGA curve of Fe<sub>2</sub>Co-TPDC. The weight loss before 300°C was solvent molecules. The whole framework of Fe<sub>2</sub>Co-TPDC completely collapsed after 400°C



Fig.S3 The PXRD patterns and photos of Fe<sub>2</sub>Co-TPDC.



**Fig. S4** Ball and stick diagrams of the  $[Fe_2Co(\mu_3-O)(CH_3COO)_6]$  and the speculate fissile mechanism.  $Co^{2+}$  ion escaped from the original cluster, and recombined with two  $Fe^{3+}$  ions to form a lineal  $[Fe_2Co(COO)_6]$  cluster. Color scheme: dark red (Fe), purple (Co), red (O), blue (C). All of the hydrogen atoms are omitted for clarity.



**Fig. S5** Ball and stick diagrams of the  $H_2$ TPDC ligand, [Fe<sub>2</sub>Co] cluster and [Fe<sub>2</sub>Co][TPDC]<sub>6</sub> unit. Ball/stick/polyhedral diagrams of the 1D inorganic metal chain. Color scheme: yellow (S), dark red (Fe), purple (Co), red (O), blue (C). All of the hydrogen atoms are omitted for clarity.



**Fig. S6** Ball/stick diagrams of a) the single left-handed helix and double left-handed helix; b) single right-handed helix and double right-handed helix in Type-II 4-fold meso-helix of Fe<sub>2</sub>Co-TPDC. All of the hydrogen atoms are omitted for clarity.



Fig. S7 Schematic illustration of the topology of Fe<sub>2</sub>Co-TPDC, Type-I and Type-II 4-fold meso-helix.



Fig.S8 Cyclic voltammograms for the Fe<sub>2</sub>Co-TPDC anode at the range of 0.01-3 V (scan rate:0.1 mV s<sup>-1</sup>).



Fig.S9 Nyquist plots of Fe<sub>2</sub>Co-TPDC anode after the first and 100th discharge-charge process.



Fig.S10 Probable Li<sup>+</sup> binding sites provided by the sulfur-containing ligand of Fe<sub>2</sub>Co-TPDC.



Fig.S11 The charge-discharge curves of graphite anode during the initial two cycles at a current density 0.1C (0.1C=100mA cm<sup>-2</sup>).



**Fig.S12** The charge-discharge capacity and the coulombic efficiency of graphite anode during 100 cycles at a current density 0.1C (0.1C=100mA cm<sup>-2</sup>).



Fig.S13 Rate performance of graphite anode at current densities of 0.1C to 1C (0.1C=100mA cm<sup>-2</sup>).

| Compound reference                          | Fe <sub>2</sub> Co-TPDC                |
|---------------------------------------------|----------------------------------------|
| Chemical formula                            | $C_{27}H_{24}N_{3}O_{15}S_{3}Fe_{2}Co$ |
| Formula Mass                                | 897.31                                 |
| Crystal system                              | Monoclinic                             |
| a/Å                                         | 17.8560                                |
| b/Å                                         | 9.7510                                 |
| c/Å                                         | 21.2030                                |
| α/°                                         | 90                                     |
| β/°                                         | 102.928                                |
| <i>v/</i> °                                 | 90                                     |
| Unit cell volume/Å3                         | 3598(2)                                |
| Temperature/K                               | 293(2)                                 |
| Space group                                 | P21/c                                  |
| No. of formula units per unit cell, Z       | 4                                      |
| No. of reflections measured                 | 26760                                  |
| Final $R_1$ values ( $l > 2\sigma(l)$ )     | 0.0404                                 |
| Final $wR(F^2)$ values (I> $2\sigma(I)$ )   | 0.1100                                 |
| Final $R_1$ values (all data)               | 0.0485                                 |
| Final wR(F <sup>2</sup> ) values (all data) | 0.1139                                 |
| Goodness of fit on <i>F</i> <sup>2</sup>    | 1.169                                  |
| CCDC no.                                    | 1814820                                |

 Table S1. Crystal data and structure refinement for Fe<sub>2</sub>Co-TPDC.

 ${}^{a}R_{1} = \sum \left\| F_{o} \right\| - \left\| F_{c} \right\| / \sum \left\| F_{o} \right\|. \quad {}^{b} wR_{2} = \left\{ \sum \left[ w (F_{o}^{2} - F_{c}^{2})^{2} \right] / \sum \left[ w (F_{o}^{2})^{2} \right] \right\}^{1/2}$ 

## Table S2. Selected bonds lengths (Å) and angles (°) for $Fe_2Co$ -TPDC.

| Fe(1)-O(1)#1        | 2.038(3)   | Fe(1)-O(9)#2      | 2.078(3)  |
|---------------------|------------|-------------------|-----------|
| Fe(1)-O(4)          | 2.078(3)   | Fe(1)-O(6)#1      | 2.098(3)  |
| Fe(1)-O(8)#3        | 2.178(3)   | Fe(1)-O(7)#3      | 2.269(3)  |
| Fe(2)-O(5)          | 2.020(3)   | Fe(2)-O(11)       | 2.044(3)  |
| Fe(2)-O(2)          | 2.081(3)   | Fe(2)-O(13)       | 2.169(3)  |
| Fe(2)-O(10)#4       | 2.181(3)   | Fe(2)-O(9)#4      | 2.268(3)  |
| Co(1)-O(3)          | 2.008(3)   | Co(1)-O(12)#5     | 2.049(3)  |
| Co(1)-O(14)         | 2.052(3)   | Co(1)-O(15)       | 2.094(3)  |
| Co(1)-O(7)#3        | 2.143(3)   | O(6)-Fe(1)#2      | 2.098(3)  |
| O(1)-Fe(1)#2        | 2.038(3)   | O(12)-Co(1)#5     | 2.049(3)  |
| O(7)-Co(1)#6        | 2.143(3)   | O(7)-Fe(1)#6      | 2.269(3)  |
| O(9)-Fe(1)#1        | 2.078(3)   | O(9)-Fe(2)#7      | 2.268(3)  |
| O(10)-Fe(2)#7       | 2.181(3)   | O(8)-Fe(1)#6      | 2.178(3)  |
| O(1)#1-Fe(1)-O(9)#2 | 100.80(11) | O(1)#1-Fe(1)-O(4) | 87.87(13) |

| O(9)#2-Fe(1)-O(4)   | 90.34(11)  | O(4)-Fe(1)-O(6)#1    | 179.22(13) |
|---------------------|------------|----------------------|------------|
| O(1)#1-Fe(1)-O(6)#1 | 92.79(13)  | O(1)#1-Fe(1)-O(8)#3  | 158.35(12) |
| O(9)#2-Fe(1)-O(6)#1 | 89.12(11)  | O(9)#2-Fe(1)-O(8)#3  | 100.77(11) |
| O(4)-Fe(1)-O(8)#3   | 93.88(13)  | O(6)#1-Fe(1)-O(8)#3  | 85.66(11)  |
| O(1)#1-Fe(1)-O(7)#3 | 99.31(11)  | O(9)#2-Fe(1)-O(7)#3  | 158.71(10) |
| O(4)-Fe(1)-O(7)#3   | 97.31(11)  | O(6)#1-Fe(1)-O(7)#3  | 82.99(11)  |
| O(8)#3-Fe(1)-O(7)#3 | 59.05(10)  | O(5)-Fe(2)-O(11)     | 112.97(12) |
| O(5)-Fe(2)-O(2)     | 98.91(13)  | O(11)-Fe(2)-O(2)     | 89.94(12)  |
| O(5)-Fe(2)-O(13)    | 83.98(14)  | O(11)-Fe(2)-O(13)    | 87.70(13)  |
| O(2)-Fe(2)-O(13)    | 176.82(14) | O(2)-Fe(2)-O(10)#4   | 92.63(13)  |
| O(5)-Fe(2)-O(10)#4  | 149.33(11) | O(13)-Fe(2)-O(10)#4  | 85.46(14)  |
| O(11)-Fe(2)-O(10)#4 | 95.25(11)  | O(5)-Fe(2)-O(9)#4    | 92.58(11)  |
| O(11)-Fe(2)-O(9)#4  | 153.61(10) | O(10)#4-Fe(2)-O(9)#4 | 58.41(10)  |
| O(2)-Fe(2)-O(9)#4   | 92.59(11)  | O(3)-Co(1)-O(12)#5   | 97.50(13)  |
| O(13)-Fe(2)-O(9)#4  | 88.59(12)  | O(3)-Co(1)-O(14)     | 117.62(14) |
| O(12)#5-Co(1)-O(14) | 144.81(13) | O(14)-Co(1)-O(15)    | 86.88(14)  |
| O(3)-Co(1)-O(15)    | 87.00(13)  | O(3)-Co(1)-O(7)#3    | 97.65(12)  |
| O(12)#5-Co(1)-O(15) | 93.19(14)  | O(12)#5-Co(1)-O(7)#3 | 91.30(12)  |
| O(14)-Co(1)-O(7)#3  | 86.41(12)  | O(15)-Co(1)-O(7)#3   | 173.06(13) |

Symmetry transformations used to generate equivalent atoms: #1 = -x, y+1/2, -z+3/2; #2 = -x, y-1/2, -z+3/2, -z+1/3; #3 = x+1, y, z; #4 = x, y-1, z; #5 = -x, -y, -z+1; #6 = x-1, y, z; #7 = x, y+1, z.