Supporting Information

Diastereoselective Synthesis, Structural and Reactivity Studies of Ferrocenyloxazoline Gold(I) and Gold(II) Complexes

Julia Holz, Marta Ayerbe Garcia, Wolfgang Frey, Felix Krupp, and René Peters*

Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.

Content

NMR Spectra	4
(4R,5S)-(4,5-5H-Indeno[1,2-d]-4,5-dihydro-2-oxazolyl) ferrocene (IndFO)	4
(4 <i>R</i> ,5 <i>S</i> , <i>S</i> _ρ)-(4,5-5 <i>H</i> -Indeno[1,2- <i>d</i>]-4,5-dihydro-2-oxazolyl)-2-methyl ferrocene (IndFO	Me)5
(<i>4R</i> ,5 <i>R</i> , <i>S</i> _p)-(4,5-Diphenyl-4,5-dihydro-2-oxazolyl)-2-methyl ferrocene (Ph₂FOMe)	6
(S)-(4-Isopropyl-4,5-dihydro-2-oxazolyl)-2,5-dimethyl ferrocene (<i>i</i> PrFOMe ₂)	7
(<i>S</i> , <i>S_p</i>)-(4-Isopropyl-4,5-dihydro-2-oxazolyl)-2-trimethylsilyl-5-methyl ferrocene (<i>i</i> PrF	OTMSMe) 8
(<i>S</i>)-(4- <i>Tert</i> -butyl-4,5-dihydro-2-oxazolyl)-2,5-dimethyl ferrocene (tBuFOMe ₂)	9
(4 <i>R,5S</i>)-(4,5-5 <i>H</i> -Indeno[1,2- <i>d</i>]-4,5-dihydro-2-oxazolyl)-2,5-dimethyl ferrocene (IndF	OMe ₂)10
(4R,5R)-(4,5-Diphenyl-4,5-dihydro-2-oxazolyl)-2,5-dimethyl ferrocene (Ph₂FOMe₂)	
Bis[μ-[(η5-(<i>S,R_p</i>)-2-(4'-isopropyl-4',5'-dihydro-2'-oxazolyl-κN)-cyclopentadienyl-κC)(r	ן5-
cyclopentadienyl) ferrocene]] digold(I) ((R_p)-iPrFOAu(I))	12
Bis[μ-[(η5-(<i>S,R_p</i>)-2-(4'-isopropyl-4',5'-dihydro-2'-oxazolyl-κN)-3-methyl-cyclopentadi	ienyl-κ <i>C</i>)(η5-
cyclopentadienyl) ferrocene]] digold(I) (iPrFOMeAu(I))	13
Bis[μ-[(η ⁵ -(<i>S</i> , <i>R_p</i>)-2-(4'-isopropyl-4',5'-dihydro-2'-oxazolyl-κN)-3-trimethylsilyl-cyclope	entadienyl-
κ <i>C</i>)(η ⁵ -cyclopentadienyl) ferrocene]] digold(I) (<i>i</i> PrFOTMSAu(I))	14
Bis[μ-[(η ⁵ -(<i>S</i> , <i>R_p</i>)-2-(4'- <i>tert</i> -butyl-4',5'-dihydro-2'-oxazolyl-к <i>N</i>)-3-methyl-cyclopentadi	enyl-κ <i>C</i>)(η ⁵ -
cyclopentadienyl) ferrocene]] digold(I) (tBuFOMeAu(I))	15
Bis[μ-[(η ⁵ -(<i>S</i> , <i>S_p</i>)-2-(4',5'-5' <i>H</i> -Indeno[1,2- <i>d</i>]-4',5'-dihydro-2'-oxazolyl-κN)-3-methyl-cy	clopentadienyl-
κ <i>C</i>)(η ⁵ -cyclopentadienyl) ferrocene]] digold(I) (IndFOMeAu(I))	16
Bis[μ-[(η⁵-(<i>S</i> , <i>S</i> _p)-2-(4',5'-diphenyl-4',5'-dihydro-2'-oxazolyl-κN)-3-methyl-cyclopentad	dienyl-κ <i>C</i>)(η ⁵ -
cyclopentadienyl) ferrocene]] digold(I) (Ph₂FOMeAu(I))	17
<i>rac</i> -Bis[μ-[(η ⁵ -2-(2'-oxazolyl-κ <i>N</i>)-3-methyl-cyclopentadienyl-κ <i>C</i>)(η ⁵ -cyclopentadienyl) ferrocene]]
digold(I) (H₂FOMeAu(I))	18
<i>rac</i> -Bis[μ-[(η ⁵ -2-(4',5'-Dihydro-4',4'-dimethyl-2'-oxazolyl-кN)-3-methyl-cyclopentadie	enyl-к <i>С</i>)(ŋ⁵-
cyclopentadienyl) ferrocene]] digold(I) (Me₂FOMeAu(I))	19
<i>rac</i> -Bis[μ-[(η ⁵ -2-(2'-oxazolyl-κN)-cyclopentadienyl-κC)(η ⁵ -cyclopentadienyl) ferroco	ene]] digold(I)
(H₂FOAu(l))	20
<i>rac</i> -Bis[μ-[(η ⁵ -2-(4',5'-Dihydro-4',4'-dimethyl-2'-oxazolyl-κN)-cyclopentadienyl-κ <i>C</i>)(η	⁵ -
cyclopentadienyl) ferrocene]] digold(I) (Me₂FOAu(I))	21
Dichlorobis[μ-[(η ⁵ -(<i>S</i> , <i>R_ρ</i>)-2-(4'-isopropyl-4',5'-dihydro-2'-oxazolyl-κ <i>N</i>)-3-methyl-cyclo	opentadienyl-
κ <i>C1</i>)(η ⁵ -cyclopentadienyl) ferrocene]] digold(II) (<i>i</i> PrFOMeAu(II)Cl)	22
Dichlorobis[μ-[(η ⁵ -(<i>S</i> , <i>R_ρ</i>)-2-(4'-isopropyl-4',5'-dihydro-2'-oxazolyl-κ <i>N</i>)-3-trimethylsily	'l-
cyclopentadienyl-κ <i>C</i>)(η ⁵ -cyclopentadienyl) ferrocene]] digold(II) (<i>i</i> PrFOTMSAu(II)Cl)	23
Dichlorobis[μ-[(η ⁵ -(<i>S</i> , <i>R_ρ</i>)-2-(4'- <i>tert</i> -butyl-4',5'-dihydro-2'-oxazolyl-κ <i>N</i>)-3-methyl-cyclo	opentadienyl-
κ <i>C</i>)(η ⁵ -cyclopentadienyl) ferrocene]] digold(II) (tBuFOMeAu(II)CI)	24
Dichlorobis[μ -[(η^{5} -(<i>S</i> , <i>S</i> _p)-2-(4',5'-5' <i>H</i> -Indeno[1,2- <i>d</i>]-4',5'-dihydro-2'-oxazolyl- κ <i>N</i>)-3-m cyclopentadienyl- κ C)(η^{5} -cyclopentadienyl) ferrocene]] digold(II) (IndFOMeAu(II)CI).	ethyl- 25

Dichlorobis[μ-[(η ⁵ -(<i>S,S_p</i>)-2-(4',5'-diphenyl-4',5'-dihydro-2'-oxazolyl-κN)-3-methyl-cyclopentadienyl- κ <i>C</i>)(η ⁵ -cyclopentadienyl) ferrocene]] digold(II) (Ph₂FOMeAu(II)Cl)
Dibromobis[μ-[(η ⁵ -(<i>S</i> , <i>R_p</i>)-2-(4'-isopropyl-4',5'-dihydro-2'-oxazolyl-κ <i>N</i>)-3-methyl-cyclopentadienyl- κ <i>C1</i>)(η ⁵ -cyclopentadienyl) ferrocene]] digold(II) (<i>i</i> PrFOMeAu(II)Br)
Diiodobis[μ-[(η ⁵ -(<i>S</i> , <i>R_p</i>)-2-(4'-isopropyl-4',5'-dihydro-2'-oxazolyl-κ <i>N</i>)-3-methyl-cyclopentadienyl- κ <i>C1</i>)(η ⁵ -cyclopentadienyl) ferrocene]] digold(II) (iPrFOMeAu(II)I)
(S, R_p, S, R_p) -2,2'-Bis[(4-Isopropyl-4,5-dihydro-2-oxazolyl)-3-methyl] 1,1'-biferrocenyl ((<i>iPrFOMe</i>) ₂) 2
Diacetatobis[μ-[(η ⁵ -(<i>S</i> , <i>R_p</i>)-2-(4'-isopropyl-4',5'-dihydro-2'-oxazolyl-κ <i>N</i>)-3-methyl-cyclopentadienyl- κ <i>C1</i>)(η ⁵ -cyclopentadienyl) ferrocene]] digold(II) (<i>i</i> PrFOMeAu(II)OAc)
UV-Vis Spectra
CD Spectra 3

NMR Spectra

Figure S1m¹H NMR spectrum at 700 MHz of Compound IndFO in CDCl₃.

Figure S2 ¹³C {¹H} NMR spectrum at 175 MHz of Compound IndFO in CDCl₃.

(4*R*,5*S*,*S_p*)-(4,5-5*H*-Indeno[1,2-*d*]-4,5-dihydro-2-oxazolyl)-2-methyl ferrocene (IndFOMe)

Figure S3¹H NMR spectrum at 400 MHz of Compound IndFOMe in CDCl₃.

Figure S4 ¹³C {¹H} NMR spectrum at 100 MHz of Compound IndFOMe in CDCl₃.

Figure S5¹H NMR spectrum at 500 MHz of Compound Ph₂FOMe in CDCl₃.

Figure S6 ¹³C {¹H} NMR spectrum at 125 MHz of Compound Ph₂FOMe in CDCl₃.

Figure S7¹H NMR spectrum at 500 MHz of Compound *i*PrFOMe₂ in CDCl₃.

Figure S8 ¹³C {¹H} NMR spectrum at 125 MHz of Compound *i*PrFOMe₂ in CDCl₃.

(*S*,*S*_{*p*})-(4-Isopropyl-4,5-dihydro-2-oxazolyl)-2-trimethylsilyl-5-methyl ferrocene (*i*PrFOTMSMe)

Figure S9¹H NMR spectrum at 400 MHz of Compound *i*PrFOTMSMe in CDCl₃.

Figure S10¹³C {¹H} NMR spectrum at 100 MHz of Compound *i*PrFOTMSMe in CDCl₃.

Figure S11¹H NMR spectrum at 500 MHz of Compound *t*BuFOMe₂ in CDCl₃.

Figure S12 ¹³C {¹H} NMR spectrum at 125 MHz of Compound *t*BuFOMe₂ in CDCl₃.

Figure S13¹H NMR spectrum at 400 MHz of Compound IndFOMe₂ in CDCl₃.

Figure S14 ¹³C {¹H} NMR spectrum at 100 MHz of Compound IndFOMe₂ in CDCl₃.

Figure S15¹H NMR spectrum at 400 MHz of Compound Ph₂FOMe₂ in CDCl₃.

Figure S16¹³C {¹H} NMR spectrum at 125 MHz of Compound Ph₂FOMe₂ in CDCl₃.

Bis[μ-[(η5-(S, R_p)-2-(4'-isopropyl-4',5'-dihydro-2'-oxazolyl-κN)-cyclopentadienyl-κC)(η5-cyclopentadienyl) ferrocene]] digold(I) ((R_p)-*i*PrFOAu(I))

Figure S17¹H NMR spectrum at 400 MHz of Compound (R_p)-*i*PrFOAu(I) in CDCl₃.

Bis[μ-[(η5-(S, R_p)-2-(4'-isopropyl-4',5'-dihydro-2'-oxazolyl-κN)-3-methyl-cyclopentadienylκC)(η5-cyclopentadienyl) ferrocene]] digold(I) (*i*PrFOMeAu(I))

Figure S18¹H NMR spectrum at 700 MHz of Compound *i*PrFOMeAu(I) in C₆D₆.

Figure S19¹³C {¹H} NMR spectrum at 175 MHz of Compound *i*PrFOMeAu(I) in C₆D₆.

 $Bis[\mu-[(\eta^{5}-(S,R_{p})-2-(4'-isopropyl-4',5'-dihydro-2'-oxazolyl-\kappa N)-3-trimethylsilyl-cyclopentadienyl \kappa C)(\eta^{5}-cyclopentadienyl) ferrocene]] digold(I) ($ *i*PrFOTMSAu(I))

Figure S20¹H NMR spectrum at 500 MHz of Compound *i*PrFOTMSAu(I) in CD₂Cl₂.

Figure S21¹³C {¹H} NMR spectrum at 125 MHz of Compound *i*PrFOTMSAu(I) in CD₂Cl₂.

 $Bis[\mu-[(\eta^{5}-(S,R_{p})-2-(4'-tert-butyl-4',5'-dihydro-2'-oxazolyl-\kappa N)-3-methyl-cyclopentadienyl \kappa C)(\eta^{5}-cyclopentadienyl) ferrocene]] digold(I) (tBuFOMeAu(I))$

Figure S22¹H NMR spectrum at 500 MHz of Compound *t*BuFOMeAu(I) in CD₂Cl₂.

Figure S23 ¹³C {¹H} NMR spectrum at 125 MHz of Compound *t*BuFOMeAu(I) in CD₂Cl₂.

Bis[μ-[(η^5 -(*S*,*S_p*)-2-(4',5'-5'*H*-Indeno[1,2-*d*]-4',5'-dihydro-2'-oxazolyl-κ*N*)-3-methylcyclopentadienyl-κ*C*)(η^5 -cyclopentadienyl) ferrocene]] digold(I) (IndFOMeAu(I))

Figure S24¹H NMR spectrum at 700 MHz of Compound IndFOMeAu(I) in CDCl₃.

Figure S25¹³C {¹H} NMR spectrum at 175 MHz of Compound IndFOMeAu(I) in CDCl₃.

 $Bis[\mu-[(\eta^{5}-(S,S_{p})-2-(4',5'-diphenyl-4',5'-dihydro-2'-oxazolyl-\kappa N)-3-methyl-cyclopentadienyl-\kappa C)(\eta^{5}-cyclopentadienyl) ferrocene]] digold(I) (Ph_2FOMeAu(I))$

Figure S26¹H NMR spectrum at 700 MHz of Compound Ph₂FOMeAu(I) in CD₂Cl₂.

Figure S27 ¹³C {¹H} NMR spectrum at 175 MHz of Compound Ph₂FOMeAu(I) in CD₂Cl₂.

$\label{eq:rac-Bis} $$ rac-Bis[\mu-[(\eta^5-2-(2'-oxazolyl-\kappa N)-3-methyl-cyclopentadienyl-\kappa C)(\eta^5-cyclopentadienyl)$ ferrocene]] digold(I) (H_2FOMeAu(I)) $$$

Due to fast decomposition the NMR spectra are not perfectly pure and an absolute proof of purity was not possible. Especially the ¹H-NMR is quite complex.

Figure S28¹H NMR spectrum at 400 MHz of Compound H₂FOMeAu(I) in CDCl₃.

Figure S29 ^{13}C { ^{1}H } NMR spectrum at 175 MHz of Compound $H_{2}FOMeAu(I)$ in CD₂Cl₂.

 $\label{eq:rac-Bis} $$ rac-Bis[\mu-[(\eta^5-2-(4',5'-Dihydro-4',4'-dimethyl-2'-oxazolyl-\kappa N)-3-methyl-cyclopentadienyl-\kappa C)(\eta^5-cyclopentadienyl) ferrocene]] digold(I) (Me_2FOMeAu(I)) $$ the set of the$

Figure S30¹H NMR spectrum at 700 MHz of Compound Me₂FOMeAu(I) in CD₂Cl₂.

Figure S31 ¹³C {¹H} NMR spectrum at 175 MHz of Compound Me₂FOMeAu(I) in CD₂Cl₂.

rac-Bis[μ -[(η^5 -2-(2'-oxazolyl- κN)-cyclopentadienyl- κC)(η^5 -cyclopentadienyl) ferrocene]] digold(I) (H₂FOAu(I))

Due to fast decomposition the NMR spectra are not perfectly pure and an absolute proof of purity was not possible.

Figure S32¹H NMR spectrum at 700 MHz of Compound H₂FOAu(I) in CD₂Cl₂.

Figure S33 ^{13}C { ^{1}H } NMR spectrum at 175 MHz of Compound H₂FOAu(I) in CD₂Cl₂.

rac-Bis[μ -[(η^{5} -2-(4',5'-Dihydro-4',4'-dimethyl-2'-oxazolyl- κN)-cyclopentadienyl- κC)(η^{5} -cyclopentadienyl) ferrocene]] digold(I) (Me₂FOAu(I))

Figure S34¹H NMR spectrum at 700 MHz of Compound Me₂FOAu(I) in CD₂Cl₂.

Figure S35 13 C { 1 H} NMR spectrum at 175 MHz of Compound Me₂FOAu(I) in CD₂Cl₂.

Dichlorobis[μ -[(η^5 -(S, R_p)-2-(4'-isopropyl-4',5'-dihydro-2'-oxazolyl- κN)-3-methyl-cyclopentadienyl- $\kappa C1$)(η^5 -cyclopentadienyl) ferrocene]] digold(II) (*i*PrFOMeAu(II)Cl)

Figure S36¹H NMR spectrum at 700 MHz of Compound *i*PrFOMeAu(II)Cl in CDCl₃.

Figure S37¹³C {¹H} NMR spectrum at 175 MHz of Compound *i*PrFOMeAu(II)Cl in CDCl₃.

Dichlorobis[μ -[(η^5 -(S, R_p)-2-(4'-isopropyl-4',5'-dihydro-2'-oxazolyl- κN)-3-trimethylsilyl-cyclopentadienyl- κC)(η^5 -cyclopentadienyl) ferrocene]] digold(II) (*i*PrFOTMSAu(II)Cl)

Figure S38¹H NMR spectrum at 400 MHz of Compound *i*PrFOTMSAu(II)Cl in CD₂Cl₂.

Figure S39¹³C {¹H} NMR spectrum at 125 MHz of Compound *i*PrFOTMSAu(II)Cl in CD₂Cl₂.

Dichlorobis[μ -[(η^5 -(S, R_p)-2-(4'-*tert*-butyl-4',5'-dihydro-2'-oxazolyl- κN)-3-methylcyclopentadienyl- κC)(η^5 -cyclopentadienyl) ferrocene]] digold(II) (*t*BuFOMeAu(II)Cl)

Figure S40¹H NMR spectrum at 700 MHz of Compound *t*BuFOMeAu(II)Cl in CD₂Cl₂.

Figure S41 ¹³C {¹H} NMR spectrum at 175 MHz of Compound *t*BuFOMeAu(II)Cl in CD₂Cl₂.

 $\label{eq:linear} Dichlorobis[\mu-[(\eta^5-(S,S_p)-2-(4',5'-5'H-Indeno[1,2-d]-4',5'-dihydro-2'-oxazolyl-\kappa N)-3-methyl-cyclopentadienyl-\kappa C)(\eta^5-cyclopentadienyl) ferrocene]] digold(II) (IndFOMeAu(II)Cl)$

Figure S42¹H NMR spectrum at 700 MHz of Compound IndFOMeAu(II)Cl in CD₂Cl₂.

Figure S43 ¹³C {¹H} NMR spectrum at 175 MHz of Compound IndFOMeAu(II)Cl in CD₂Cl₂.

Dichlorobis[μ -[(η^5 -(S,S_p)-2-(4',5'-diphenyl-4',5'-dihydro-2'-oxazolyl- κN)-3-methyl-cyclopentadienyl- κC)(η^5 -cyclopentadienyl) ferrocene]] digold(II) (Ph₂FOMeAu(II)Cl)

Figure S44¹H NMR spectrum at 700 MHz of Compound Ph₂FOMeAu(II)Cl in CD₂Cl₂.

Figure S45 ¹³C {¹H} NMR spectrum at 175 MHz of Compound Ph₂FOMeAu(II)Cl in CD₂Cl₂.

Dibromobis[μ -[(η^5 -(S, R_p)-2-(4'-isopropyl-4',5'-dihydro-2'-oxazolyl- κN)-3-methyl-cyclopentadienyl- $\kappa C1$)(η^5 -cyclopentadienyl) ferrocene]] digold(II) (*i*PrFOMeAu(II)Br)

Figure S46¹H NMR spectrum at 400 MHz of Compound *i*PrFOMeAu(II)Br in CD₂Cl₂.

Figure S47 ¹³C {¹H} NMR spectrum at 100 MHz of Compound *i*PrFOMeAu(II)Br in CD₂Cl₂.

$$\label{eq:linear} \begin{split} Diiodobis[\mu-[(\eta^5-(S,R_p)-2-(4'-isopropyl-4',5'-dihydro-2'-oxazolyl-\kappa N)-3-methyl-cyclopentadienyl- \\ \kappa C1)(\eta^5-cyclopentadienyl) ferrocene]] digold(II) (iPrFOMeAu(II)I) \end{split}$$

Figure S48¹H NMR spectrum at 400 MHz of Compound *i*PrFOMeAu(II)I in CD₂Cl₂.

Figure S49 ¹³C {¹H} NMR spectrum at 175 MHz of Compound *i*PrFOMeAu(II)I in CD₂Cl₂.

(*S*,*R*_{*p*},*S*,*R*_{*p*})-2,2'-Bis[(4-Isopropyl-4,5-dihydro-2-oxazolyl)-3-methyl] ((*i*PrFOMe)₂)

Figure S50¹H NMR spectrum at 700 MHz of Compound (*i*PrFOMe)₂ in CD₂Cl₂.

Figure S51 ¹³C {¹H} NMR spectrum at 100 MHz of Compound (*i*PrFOMe)₂ in CD₂Cl₂.

Diacetatobis[μ -[(η^{5} -(S, R_{p})-2-(4'-isopropyl-4',5'-dihydro-2'-oxazolyl- κN)-3-methylcyclopentadienyl- κCI)(η^{5} -cyclopentadienyl) ferrocene]] digold(II) (*i*PrFOMeAu(II)OAc)

Figure S52¹H NMR spectrum at 700 MHz of Compound *i*PrFOMeAu(II)OAc in CDCl₃.

Figure S53 ¹³C {¹H} NMR spectrum at 175 MHz of Compound *i*PrFOMeAu(II)OAc in CDCl₃.

Figure S54 UV-Vis-Absorbance spectra for Au-complexes derived from ligand *i*PrFOMe.

Figure S55 UV-Vis-Absorbance spectra of Au(I) complexes with different ligands.

CD-Spectra

Figure S57 CD-spectra for Au(II)-complexes (concentrations used: (R_p) -*i*PrFOMeAu(II)Cl: 0.27 mmol/L; (S_p) -Ph₂FOMeAu(II)Cl: 0.27 mmol/L).