## **Supplement information for the manuscript**

## Synthesis, Structure, and Polymorphic Transitions of Praseodymium(III) and Neodymium(III) Borohydride, Pr(BH<sub>4</sub>)<sub>3</sub> and Nd(BH<sub>4</sub>)<sub>3</sub>

SeyedHosein Payandeh GharibDoust<sup>a</sup>\*, Michael Heere<sup>b,c</sup>, Carlo Nervi<sup>d</sup>, Magnus H. Sørby<sup>b</sup>, Bjørn C. Hauback<sup>b</sup>, Torben R. Jensen<sup>a</sup>\*

<sup>a</sup>Center for Materials Crystallography, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C, Denmark <sup>b</sup>Department for Neutron Materials Characterization, Institute for Energy Technology, NO-2027 Kjeller, Norway.

<sup>c</sup>Research Neutron Source Munich (FRM2) and Karlsruhe Institute of Technology (KIT), Institute for Applied Materials—Energy Storage Systems (IAM-ESS), 76344 Eggenstein, Germany

<sup>d</sup>Department of Chemistry, NIS and CIRCC, University of Turin, Via P. Giuria 9, I-10125 Torino, Italy

Keywords: borohydride, rare earth, hydrogen storage, decomposition, halide free



**Figure S1** *In-situ* SR-XRPD data of  $Pr(^{11}BD_4)_3S(CH_3)_2$  (s1) compound under p(Ar) = 1 bar.  $\Delta T/\Delta t = 5 \ ^\circ C/\min(\lambda = 0.7129 \ ^\circ A)$ . Symbols:  $\bullet Pr(^{11}BD_4)_3S(CH_3)_2$ ;  $\blacksquare \alpha - Pr(^{11}BD_4)_3 Pa\overline{3}$ ;  $\square \beta - Pr(^{11}BD_4)_3 Fm\overline{3}c$ ;  $\boxtimes \beta \ ^\circ - Pr(^{11}BD_4)_3 Fm\overline{3}c$  and  $\nabla$  for  $r-Pr(^{11}BD_4)_3 R\overline{3}c$ .



**Figure S2** a) *In-situ* SR-XRPD data of  $Pr(BH_4)_3$  (s3) under p(Ar) = 1 bar.  $\Delta T/\Delta t = 5$  °C/min ( $\lambda = 0.2072$  Å). b) Sample composition and c) *V/Z* of each phase extracted by Rietveld refinement of SR-XRPD data, symbols:  $\blacksquare$  for  $\alpha$ -Pr(BH<sub>4</sub>)<sub>3</sub> (*Pa* $\overline{3}$ );  $\square$  for  $\beta$ -Pr(BH<sub>4</sub>)<sub>3</sub> (*Fm* $\overline{3}c$ );  $\boxtimes$  for  $\beta$ ''-Pr(BH<sub>4</sub>)<sub>3</sub> (*Fm* $\overline{3}c$ ) and  $\triangleleft$  for r-Pr(BH<sub>4</sub>)<sub>3</sub> (*R* $\overline{3}c$ ).



**Figure S3** *In-situ* SR-XRPD data of Nd(BH<sub>4</sub>)<sub>3</sub>S(CH<sub>3</sub>)<sub>2</sub> (s4) under p(Ar) = 1 bar.  $\Delta T/\Delta t = 5$ °C/min ( $\lambda = 0.2072$  Å). Symbols:  $\otimes$  for Nd(BH<sub>4</sub>)<sub>3</sub>S(CH<sub>3</sub>)<sub>2</sub> and  $\blacklozenge$  for  $\alpha$ -Nd(BH<sub>4</sub>)<sub>3</sub> ( $Pa\overline{3}$ ).



**Figure S4** a) *In-situ* SR-XRPD data of Nd(BH<sub>4</sub>)<sub>3</sub> (**s5**) under  $p(H_2) = 98$  bar.  $\Delta T/\Delta t = 5$  °C/min ( $\lambda = 0.2072$  Å). b) Sample composition and c) *V*/*Z* of each phase extracted by Rietveld refinement of SR- XRPD data, c) symbols:  $\blacklozenge$  for  $\alpha$ -Nd(BH<sub>4</sub>)<sub>3</sub> (*Pa* $\overline{3}$ ); O for  $\beta$ -Nd(BH<sub>4</sub>)<sub>3</sub> (*Fm* $\overline{3}c$ ) and  $\otimes$  for  $\beta$ ''-Nd(BH<sub>4</sub>)<sub>3</sub> (*Fm* $\overline{3}c$ ).

| Sample                                                     | a-Nd(BH <sub>4</sub> ) <sub>3</sub> | $\beta$ -Nd(BH <sub>4</sub> ) <sub>3</sub> | β'-Nd(BH <sub>4</sub> ) <sub>3</sub> | β''-Nd(BH <sub>4</sub> ) <sub>3</sub> |
|------------------------------------------------------------|-------------------------------------|--------------------------------------------|--------------------------------------|---------------------------------------|
| Crystal system                                             | cubic                               | cubic                                      | cubic                                | cubic                                 |
| Space group                                                | Pa3                                 | Fm3c                                       | Fm3c                                 | Fm3c                                  |
| <i>T</i> (°C)                                              | RT                                  | 134                                        | 190                                  | 269                                   |
| a (Å)                                                      | 11.2034(5)                          | 11.394(3)                                  | 11.3034(2)                           | 11.1386(1)                            |
| RE-B                                                       | 2.8306(1)                           | 2.8485(8)                                  | 2.8259(4)                            | 2.7847(3)                             |
| Ζ                                                          | 8                                   | 8                                          | 8                                    | 8                                     |
| $V(\text{\AA}^3)$                                          | 1406.21(11)                         | 1479.21(70)                                | 1444.2(3)                            | 1381.95(21)                           |
| V/Z (Å <sup>3</sup> )                                      | 175.77                              | 184.90                                     | 180.5                                | 172.7                                 |
| $\rho (g \text{ cm}^{-3})$                                 | 1.8146                              | 1.6953                                     | 1.7364                               | 1.8146                                |
| ρv (H <sub>2</sub> ) (kg H <sub>2</sub> .m <sup>-3</sup> ) | 116.2783                            | 108.6329                                   | 111.2663                             | 116.2783                              |
| ρm (H <sub>2</sub> ) (wt%)                                 | 6.4074                              | 6.4074                                     | 6.4074                               | 6.4074                                |
| Wt%                                                        | 93(1)                               | 7.9(0.6)                                   | 20.8(9)                              | 100                                   |

**Table S1** Structural data extracted from Rietveld refinement of the SR-XRPD data for  $\alpha$ ,  $\beta$ ,  $\beta$ ' and  $\beta$ ''-Nd(BH<sub>4</sub>)<sub>3</sub> measured under  $p(H_2) = 98$  bar.



**Figure S5** XRPD pattern and refinement of  $Pr(BH_4)_3$  (**s3**,  $\lambda = 0.2072$  Å). Red line: experimental data; black line: calculated pattern, blue line: difference pattern. Top blue tick for  $Pa\overline{3}$  and bottom red ticks for  $Fm\overline{3}c$  phases of  $Pr(BH_4)_3$ .  $R_{wp} = 4.99\%$  (not corrected for background),  $\chi^2 = 2810$ .



**Figure S6** XRPD pattern and refinement of  $Pr(BH_4)_3$  (**s3**,  $\lambda = 0.7129$  Å) recorded at T = 176 °C and  $p(H_2) = 40$  bar. Red line: experimental data; black line: calculated pattern, blue line: difference pattern. Top blue ticks for  $Fm\overline{3}c$  and bottom red ticks for  $R\overline{3}c$  phases of  $Pr(BH_4)_3$ .  $R_{wp} = 2.22\%$  (not corrected for background),  $\chi^2 = 301$ .



**Figure S7** XRPD pattern and refinement of  $Pr(^{11}BD_4)_3$  (s1,  $\lambda = 0.7129$  Å) recorded at T = 190 °C and p(Ar) = 1 bar. Red line: experimental data; black line: calculated pattern, blue line: difference pattern. Top blue ticks  $R\overline{3}c$  and bottom red ticks for  $Fm\overline{3}c$  phase of  $Pr(BH_4)_3$ .  $R_{wp} = 4.66\%$  (not corrected for background),  $\chi^2 = 2450$ .



**Figure S8** XRPD pattern and refinement of  $Pr(^{11}BD_4)_3S(CH_3)_2$  (s1,  $\lambda = 0.7129$  Å) recorded at RT and p(Ar) = 1 bar. Red line: experimental data; black line: calculated pattern, blue line: difference pattern. Sample composition: 1. Top, blue ticks for  $Pr(^{11}BD_4)_3S(CH_3)_2$ , middle red ticks:  $Pa\overline{3}$  and bottom green ticks for  $Fm\overline{3}c$  phase of  $Pr(BH_4)_3$ .  $R_{wp} = 6.43$  % (not corrected for background),  $\chi^2 = 4770$ .



**Figure S9** PND pattern and refinement of  $Pr(^{11}BD_4)_3S(CH_3)_2$  ( $\lambda = 1.5583$  Å) recorded at RT. Red line: experimental data; black line: calculated pattern, blue line: difference pattern. Sample composition:  $R_{wp} = 2.00$  % (not corrected for background),  $\chi^2 = 2.18$ . (This sample is obtained from another batch and therefore the sample composition does not match with sample s1).



**Figure S10** PND pattern and refinement of  $\alpha$ -Pr(<sup>11</sup>BD<sub>4</sub>)<sub>3</sub> (s2,  $\lambda = 1.494$  Å) recorded at RT. Red line: experimental data; black line: calculated pattern, blue line: difference pattern. R<sub>wp</sub> = 3.64 % (not corrected for background),  $\chi^2 = 3.43$ .



**Figure S11** PND pattern and refinement of r-Pr(<sup>11</sup>BD<sub>4</sub>)<sub>3</sub> (s2,  $\lambda = 1.5583$  Å) recorded at 160 °C after heating to 200 °C for 30 min to induce the phase transition. Red line: experimental data; black line: calculated pattern, blue line: difference pattern.  $R_{wp} = 3.95$  % (not corrected for background),  $\chi^2 = 4.12$ .



**Figure S12** XRPD pattern and refinement of  $\alpha$ -Nd(BH<sub>4</sub>)<sub>3</sub> (**s5**,  $\lambda = 0.2072$  Å) recorded at RT and  $p(H_2) = 98$  bar. Red line: experimental data; black line: calculated pattern, blue line: difference pattern. Sample composition: 1. Top, blue ticks for  $\alpha$ -Nd(BH<sub>4</sub>)<sub>3</sub> (*Pa* $\overline{3}$ ) and bottom red ticks for  $\beta$ -Pr(BH<sub>4</sub>)<sub>3</sub> (*Fm* $\overline{3}c$ ). R<sub>wp</sub> = 2.38% (not corrected for background),  $\chi^2 = 1490$ .



**Figure S13** XRPD pattern and refinement of  $\beta$ -Nd(BH<sub>4</sub>)<sub>3</sub> (**s5**,  $\lambda = 0.2072$  Å) recorded at 269 °C and  $p(H_2) = 98$  bar. Red line: experimental data; black line: calculated pattern, blue line: difference pattern. Blue ticks for  $\beta$ -Pr(BH<sub>4</sub>)<sub>3</sub>(*Fm* $\overline{3}c$ ). R<sub>wp</sub> = 4.59% (not corrected for background),  $\chi^2 = 5970$ .



**Figure S14** TGA-DSC-MS data for Nd(BH<sub>4</sub>)<sub>3</sub> (s4) heated from RT to 400 °C. Upper part: The TGA curve in black, Middle, DSC curve in blue and the corresponding MS signals in lower part for hydrogen and diborane presented by green and red curves, respectively. ( $\Delta T/\Delta t = 5$  °C/min).

| sample                | $\beta$ -Pr( <sup>11</sup> BD <sub>4</sub> ) <sub>3</sub> | $\beta$ '-Pr( <sup>11</sup> BD <sub>4</sub> ) <sub>3</sub> | $\beta$ "-Pr( <sup>11</sup> BD <sub>4</sub> ) <sub>3</sub> | r-Pr( <sup>11</sup> BD <sub>4</sub> ) <sub>3</sub> |
|-----------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|
| Crystal system        | cubic                                                     | Cubic                                                      | cubic                                                      | trigonal                                           |
| Space group           | $Fm\overline{3}c$                                         | $Fm\overline{3}c$                                          | Fm3c                                                       | R3c                                                |
| <i>T</i> (°C)         | 174                                                       | 185                                                        | 190                                                        | 190                                                |
| a (Å)                 | 11.4535(17)                                               | 11.3003(6)                                                 | 11.0983(10)                                                | 7.4989(10)                                         |
| <b>b</b> (Å)          | -                                                         | -                                                          | -                                                          |                                                    |
| <b>c</b> (Å)          | -                                                         | -                                                          | -                                                          | 19.904(6)                                          |
| <b>β</b> (°)          |                                                           |                                                            |                                                            | 120                                                |
| RE-B (Å)              | 2.8634(4)                                                 | 2.8251(2)                                                  | 2.7746(3)                                                  | 2.9236(4)                                          |
| Ζ                     | 8                                                         | 8                                                          | 8                                                          | 6                                                  |
| $V(\text{\AA}^3)$     | 1502.50(39)                                               | 1443.01(13)                                                | 1367.01(21)                                                | 969.32(34)                                         |
| V/Z (Å <sup>3</sup> ) | 187.81                                                    | 180.37                                                     | 170.88                                                     | 161.55                                             |
| Wt%                   | 4.5(0.3)                                                  | 20.5(0.5)                                                  | 12.2(0.3)                                                  | 87.8(0.9)                                          |

**Table S2** Structural data of different polymorphs of  $Pr(^{11}BD_4)_3$  extracted from Rietveld refinements of the XRPD data of  $Pr(^{11}BD_4)_3S(CH_3)_2$  (**s1**) measured in p(Ar) = 1 bar, Figure 3.

**Table S3** Structural data of different polymorphs of  $Pr(BH_4)_3$  extracted from Rietveld refinements of the XRPD data of  $Pr(BH_4)_3$  (s3) measured in  $p(H_2) = 40$  bar, Figure 4.

| sample                | $\beta$ -Pr(BH <sub>4</sub> ) <sub>3</sub> | $\beta'$ -Pr(BH <sub>4</sub> ) <sub>3</sub> | β''-Pr(BH <sub>4</sub> ) <sub>3</sub> | <i>r</i> -Pr(BH <sub>4</sub> ) <sub>3</sub> |
|-----------------------|--------------------------------------------|---------------------------------------------|---------------------------------------|---------------------------------------------|
| Crystal system        | cubic                                      | cubic                                       | Cubic                                 | trigonal                                    |
| Space group           | Fm3c                                       | $Fm\overline{3}c$                           | Fm3c                                  | R3c                                         |
| <i>T</i> (°C)         | 170                                        | 185                                         | 190                                   | 190                                         |
| a (Å)                 | 11.458(2)                                  | 11.3283(6)                                  | 11.1438(7)                            | 7.4831(12)                                  |
| <b>c</b> (Å)          | -                                          | -                                           | -                                     | 19.995(5)                                   |
| <b>β</b> (°)          | -                                          | -                                           | -                                     | 120                                         |
| RE-B (Å)              | 2.8645(5)                                  | 2.8321(2)                                   | 2.7859(2)                             | 2.9237(3)                                   |
| Z                     | 8                                          | 8                                           | 8                                     | 6                                           |
| $V(\text{\AA}^3)$     | 1504.27(45)                                | 1453.77(13)                                 | 1383.88(15)                           | 969.65(30)                                  |
| V/Z (Å <sup>3</sup> ) | 188.03                                     | 181.72                                      | 172.98                                | 161.61                                      |
| Wt%                   | 5.6(0.3)                                   | 22.92(0.3)                                  | 63.6( 0.7)                            | 36.3(0.6)                                   |